

Cilindro senza stelo ad accoppiamento magnetico

Nuovi diametri: Ø6, Ø10, Ø50 e Ø63.

Versione aggiornata del cilindro senza stelo ad accoppiamento magnetico

Esecuzione base

Montaggio diretto

Serie CY3B/CY3R

Esecuzione base

Montaggio diretto

Serie CY3B / CY3R

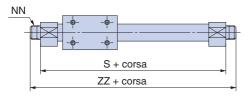
Maggior durata

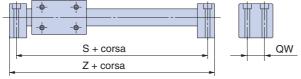
Maggiori prestazioni di guida

La lunghezza dell'anello di tenuta risulta aumentata del 70%, garantendo prestazioni migliori rispetto alla serie CY1B.

Maggiore lubrificazione con una tenuta di lubrificazione

Una speciale tenuta di lubrificazione in resina è stata installata sulla tenuta antipolvere per ottenere una lubrificazione ottimale sulla superficie esterna del tubo del cilindro.

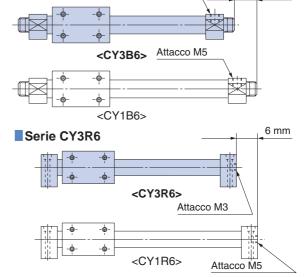

Serie CY3R Esecuzione a montaggio diretto


Dimensioni di montaggio identiche a quelle della serie CY1.

Le dimensioni di montaggio (vedere sotto) sono identiche a quelle delle serie CY1B/CY1R e consentono una sostituzione rapida.

Serie CY3B

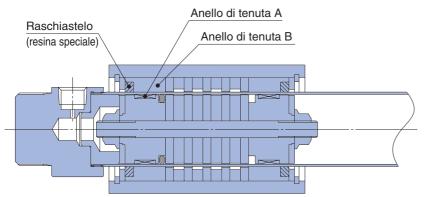
Serie CY3R



(* Per i diametri da ø6, il montaggio non è intercambiabile con la serie CY1 poiché l'attacco del raccordo è stato ridotto alla misura M3).

Serie CY3B6

Attacco M3


3 mm

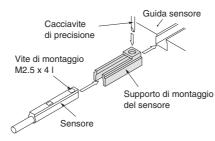
Nota) Per ordinare un prodotto intercambiabile con CY1□6, aggiungere il suffisso X1468. (vedere a pag. 27).

Versione migliorata del cilindro senza stelo ad accoppiamento magnetico!

Riduzione dell'attrito

Minima pressione d'esercizio ridotta di un 30%

Utilizzando il nuovo raschiastelo, la pressione minima d'esercizio viene ridotta del 30%

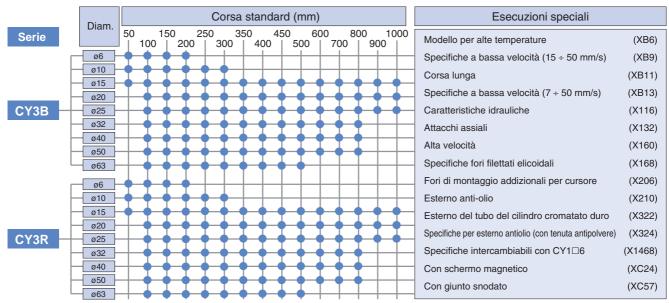

(confronto fra CY3B40 e CY1B40).

Serie CY3B

Possibilità di sensori di piccole dimensioni.

I sensori più piccolo possono essere montati sulla scanalatura utilizzata delle serie CY3R20 - 63 e sui cilindri di tutte le misure della serie CY3R, facilitando l'inventario del prodotto.

ø6, ø10, ø50 e ø63 La serie viene completata aggiungendo i nuovi diametri (ø6 ÷ ø63)

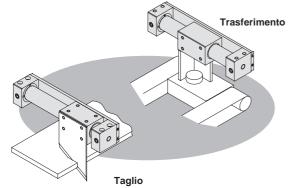


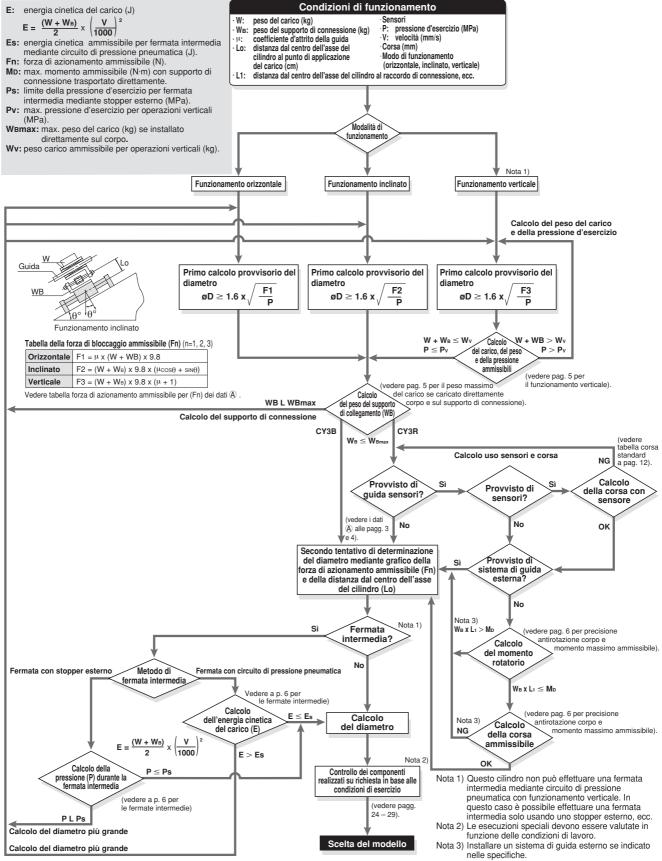
Leggero

Il peso del corpo viene ridotto del 10% circa riducendo il diametro esterno del tubo del cilindro (rispetto ai modelli precedenti ø50 e ø60)

Varianti della serie

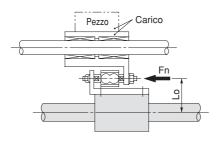
Nota) Il punto o indica la combinazione disponibile di diametro e corsa standard.


La disponibilità delle esecuzioni speciali varia a seconda della serie e del diametro. Ulteriori informazioni a pag. 24.


Serie CY3B / CY3R Criteri di selezione del modello

Donati di apalta dal mandalla	Cilindro consigliato						
Punti di scelta del modello		Esecuzioni	Caratteristiche				
● Per uso con tipi diversi di guide. ● Se è necessaria una corsa lunga.	ø40, ø50	ø15, ø20, ø25, ø32,	. Possibilità di corse lunghe.				
Per uso con tipi diversi di guide. Se vengono aggiunti sensori al modello base. Per uso senza guida con carichi leggeri (vedere esempio di applicazione). In caso di spazio molto limitato.	Serie CY3I Dim./ø6, ø10, ø40, ø50	ø15, ø20, ø25, ø32,	Cilindro a montaggio diretto. Possibilità di montaggio sensori senza oscillazione del cilindro. Meccanismo antirotazione disponibile nel campo ammissibile. I raccordi possono essere concentrati con il sistema centralizzato. Dimensioni esterne compatte. Montaggio sulla superficie superiore o sulle superfici laterali.				

Serie CY3B/CY3R Scelta del modello

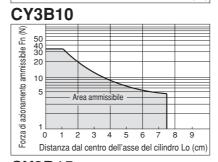

Serie CY3B/CY3R Scelta del modello

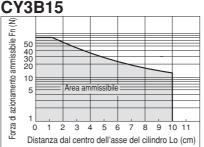
Avvertenze per la progettazione 1

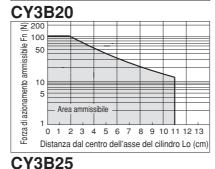
Procedura di selezione

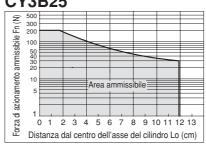
Procedura di selezione

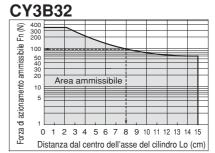
- Ricavare la forza di resistenza Fn (N)
 mentre il carico viene spostato in
 orizzontale.
- 2. Ricavare la distanza Lo (cm) dal punto del carico in cui viene applicata la forza di azionamento, fino al centro dell'asse del cilindro.
- 3. Selezionare il diametro da Lo e Fn, in base ai dati (A).

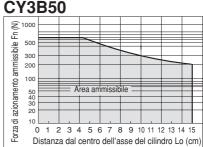

Esempio selezione


Con una forza di resistenza di azionamento del carico pari a Fn = 100 (N) e una distanza dall'asse del cilindro al punto di applicazione del carico pari a Lo = 8 cm, ricavare il punto di intersezione estendendo verso l'alto l'asse orizzontale dei dati KA, dove la distanza dal centro dell'asse è di 8 cm, quindi, estendendo lateralmente, ricavare la forza di azionamento ammissibile sull'asse verticale.

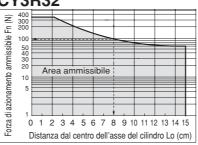

I modelli che soddisfano i requisiti di 100 (N) sono CY3 \square 32 e CY3 \square 40.


<Dati (A): distanza dal centro dell'asse del cilindro —Capacità di azionamento ammissibile>

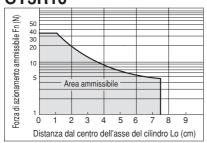


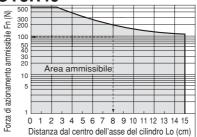


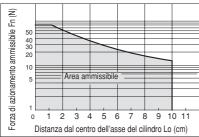
Selezione modello Serie CY3B/CY3R


Avvertenze per la progettazione 1

<Dati (A): distanza dal centro dell'asse del cilindro —Capacità di azionamento ammissibile>


CY3R6

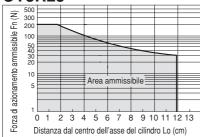

CY3R32


CY3R10

CY3R40

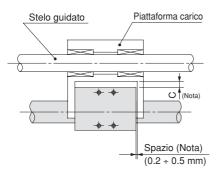
CY3R15

CY3R50


CY3R20

CY3R63

CY3R25

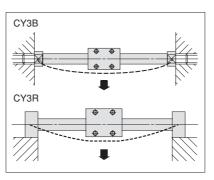


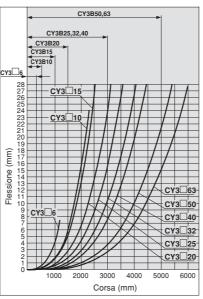
Serie CY3B/CY3R Scelta del modello

Avvertenze per la progettazione 2

Flessione dovuta al peso del cilindro

Se montato orizzontalmente, il cilindro si flette per il suo stesso peso (v. diagramma), con una variazione rispetto al centro dell'asse direttamente proporzionale alla lunghezza della corsa. Pertanto, il collegamento dovrà essere effettuato in modo da correggere tale flessione.




La tolleranza indicata è di riferimento.

Nota 1) In base alla flessione dovuta al peso, illustrata nella figura a destra, prevedere una tolleranza che permetta al cilindro di non toccare la superficie di montaggio o il carico, ecc., e che sia in grado di operare in modo uniforme in tutto il campo della pressione minima d'esercizio per l'intera corsa. Ulteriori informazioni nel manuale d'istruzioni.

Nota 2) Nel caso di modello CY3R, installare uno spessore per eliminare lo spazio tra il corpo e la guida del sensore. Ulteriori informazioni nel manuale d'istruzioni CY3R.

Nota 3) Il valore di flessione è diverso da quello di CY1B/CY1R. Regolare lo spazio facendo riferimento alla flessione del peso morto indicata nella tabella a destra

 I dati sopra indicati si intendono con cursore esterno a metà corsa.

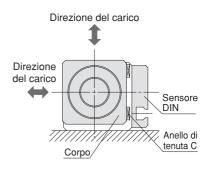
La serie CY3 è guidata da un asse esterno (ad

Peso massimo del supporto di

connessione sul corpo

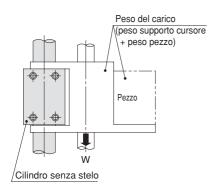
La serie CY3 è guidata da un asse esterno (ad es. una guida lineare) senza montaggio diretto del carico. Progettare il supporto metallico per collegare il carico in modo che il suo peso non oltrepassi il valore indicato nella tabella sotto. Per il cilindro CY3R a montaggio diretto, è consigliabile ricorrere a guida aggiuntiva mediante asse esterno (per i metodi di collegamento, v. il manuale delle istruzioni).

Max. peso del supporto di connessione


Modello	Peso max. del supporto di connessione (WBmax) (kg)
CY3□6	0.2
CY3□10	0.4
CY3□15	1.0
CY3□20	1.1
CY3□25	1.2
CY3□32	1.5
CY3□40	2.0
CY3□50	2.5
CY3□63	3.0

Consultare SMC per il montaggio di un supporto il cui peso superi i valori suindicati.

<CY3R> Peso massimo del carico se applicato direttamente sul corpo


Quando si applica un carico direttamente sul corpo, esso non dovrà superare i massimi valori mostrati nella tabella sottostante.

Modello	Peso max. del carico (WBmax) (kg)
CY3R6	0.2
CY3R10	0.4
CY3R15	1.0
CY3R20	1.1
CY3R25	1.2
CY3R32	1.5
CY3R40	2.0
CY3R50	2.5
CY3R63	3.0

Operazione verticale

Il carico deve essere sostenuto da cuscinetti a ricircolo di sfere (guida LM, ecc.). Nel caso si utilizzino boccole di guida, la resistenza allo scorrimento aumenta a causa del peso e del momento dinamico e ciò potrebbe causare malfunzionamenti.

Diametro (mm)	Modello	Peso del carico ammissibile (Wv) (kg)	Max. pressione d'esercizio (Pv) (MPa)
6	CY3□6	1.0	0.55
10	CY3□10	2.7	0.55
15	CY3□15	7.0	0.65
20	CY3□20	11.0	0.65
25	CY3□25	18.5	0.65
32	CY3□32	30.0	0.65
40	CY3□40	47.0	0.65
50	CY3□50	75.0	0.65
63	CY3□63	115.0	0.65

 Attenzione: il funzionamento con una pressione d'esercizio superiore al limite massimo consentito può provocare il distacco tra pistone e cursore.

Selezione modello Serie CY3B/CY3R

Avvertenze per la progettazione 3

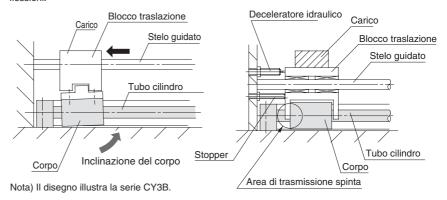
Stop intermedio

Stop intermedio del carico con stopper esterno, ecc.

Per fermare un carico a metà corsa mediante stopper esterno, ecc., non oltrepassare il limiti della pressione d'esercizio indicati nella tabella sottostante. Le operazioni al di sopra della massima pressione d'esercizio può dare come risultato il di-stacco dell'accoppiamento magnetico.

Diametro (mm)	Modello	Limite della pressione d'esercizio per la fermata intermedia (Ps) (MPa)
6	CY3□6	0.55
10	CY3□10	0.55
15	CY3□15	0.65
20	CY3□20	0.65
25	CY3□25	0.65
32	CY3□32	0.65
40	CY3□40	0.65
50	CY3□50	0.65
63	CY3□63	0.65

(2) Stop intermedio del carico con circuito di pressione pneumatica

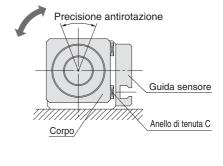

Quanto si realizza una fermata intermedia del carico mediante circuito di pressione pneumatica, applicare un'energia cinetica non superiore a quella indicata nella tabella sottostante. Le operazioni al di sopra della massima pressione d'esercizio possono dare come risultato il distacco dell'accoppiamento magnetico.

(valori di riferimento)

Diametro (mm)	Modello	Energia cinetica ammissibile per per arresto intermedio (Es) (J)
6	CY3□6	0.007
10	CY3□10	0.03
15	CY3□15	0.13
20	CY3□20	0.24
25	CY3□25	0.45
32	CY3□32	0.88
40	CY3□40	1.53
50	CY3□50	3.12
63	CY3□63	5.07

Metodo di fermata a fine corsa

Nel fermare un carico che manifesta un'elevata forza d'inerzia a fine corsa, si può inclinare il corpo e possono registrarsi danni alle guide e al tubo del cilindro (vedere illustrazioni in basso a sinistra). Come indicato nell'illustrazione in basso a destra, si consiglia l'uso di un deceleratore idraulico insieme allo stopper; inoltre, la spinta dovrebbe essere trasmessa del centro del corpo in modo da evitare flessioni


<CY3R>

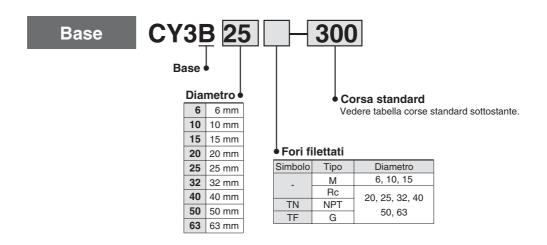
Momento massimo ammissibile e precisione antirotazione corpo (con guida sensore)

(valori di riferimento)

I valori di riferimento per precisione antirotazione e momento massimo ammissibile a fine corsa sono indicati sotto.

Diametro (mm)	Precisione antirotazione (°)	Max. momento ammissibile (Mb) (N·m)	Nota 2 Corsa ammissibile (mm)	
6	7.3	0.02	100	
10	6.0	0.05	100	
15	4.5	0.15	200	
20	3.7	0.20	300	
25	3.7	0.25	300	
32	3.1	0.40	400	
40	2.8	0.62	400	
50	2.4	1.00	500	
63	2.2	1.37	500	

- Nota 1) Evitare di operare nell'applicazione della coppia (momento) ammissibile. In questi casi è consigliato l'uso di una guida esterna.
- Nota 2) I valori di riferimento riportati sopra rientrano nei range di corsa ammissibile, ma è necessario prestare attenzione perché a mano a mano che la lunghezza della corsa aumenta, l'inclinazione (angolo di rotazione) all'interno della corsa può aumentare.
- Nota 3) Quando un carico viene applicato direttamente al corpo, il peso caricato non deve superare i valori del peso del carico ammissibile indicati a pag. 5.



Cilindro senza stelo ad accoppiamento magnetico: esecuzione base

Serie CY3B

ø6, ø10, ø15, ø20, ø25, ø32, ø40, ø50, ø63

Codici di ordinazione

Corse standard

Diametro (mm)	Corsa standard (mm)	Corsa max. disponibile (mm)
6	50, 100, 150, 200	300
10	50, 100, 150, 200, 250, 300	500
15	50, 100, 150, 200, 250, 300, 350, 400, 450, 500	1000
20		1500
25	100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800	2000
32	7 00, 000	3000
40		3000
50	100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000	5000
63	7.00, 000, 000, 1000	3000

Nota 1) La specifica corsa lunga (XB11) si applica alle corse superiori a 2000 mm. (vedere pag. 25.)

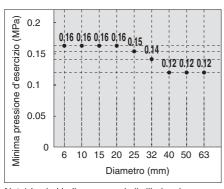
Nota 2) Quanto più lunga è la corsa, tanto maggiore sarà la flessione del tubo del cilindro. Prestare attenzione al
valore del supporto di montaggio e dello spazio.

Forza di bloccaggio

Diametro (mm)	6	10	15	20	25	32	40	50	63
Forza di presa (N)	19.6	53.9	137	231	363	588	922	1471	2256

Caratteristiche

Nota) Nel caso del montaggio verticale è impossibile effettuare una fermata intermedia mediante un circuito pneumatico.



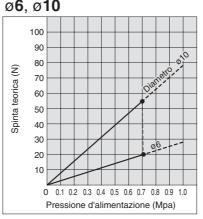
Esecuzioni speciali (ulteriori dettagli a pag. 24)

Caratteristiche
Modello per alte temperature
Specifiche a bassa velocità (15÷ 50 mm/s)
Corsa lunga
Specifiche a bassa velocità (7÷ 50 mm/s)
Caratteristiche idrauliche
Attacchi assiali
Alta velocità
Specifiche fori filettati elicoidali
Fori di montaggio addizionali per cursore
Esterno anti-olio
Esterno del tubo del cilindro cromatato duro
Specifiche per esterno antiolio (con tenuta antipolvere)
Specifiche intercambiabili con CY1⊡6
Con schermo magnetico
Con giunto snodato

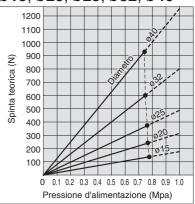
Min. pressione d'esercizio

Nota) I valori indicano quando il cilindro viene azionato senza carico.

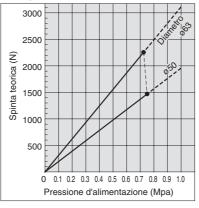
Materiale principale


Descrizione	Materiale	Nota		
Testata posteriore	Lega d'alluminio	Nichelato per elettrolisi		
Tubo cilindro	Acciaio inox			
Corpo	Lega d'alluminio	Anodizzato duro		
Anello magnetico	Magnete terre rare			

Nota) Per i dettagli vedere a pag. 9.


Forza teorica del cilindro

Per calcolare la spinta reale, Precauzione considerare la min. pressione d'esercizio nella progettazione.


ø6, ø10

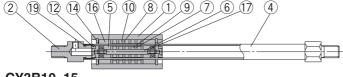
Ø15, Ø20, Ø25, Ø32, Ø40

ø50, ø63

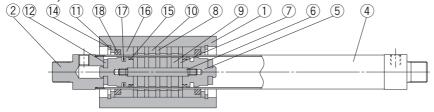
Peso

								U	Inità: kg
Diametro (mm)	6	10	15	20	25	32	40	50	63
Peso base (a 0 mm)	0.052	0.08	0.275	0.351	0.672	1.287	2.07	3.2	5.3
Peso aggiuntivo per 50 mm di corsa	0.004	0.014	0.015	0.02	0.023	0.033	0.04	0.077	0.096

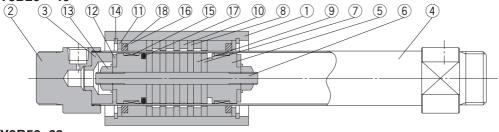
Metodo di calcolo/Esempio: CY3B32-500

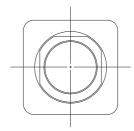

Peso base 1.287 kg Peso aggiuntivo......0.033 kg/50 mm $\frac{1.287 + 0.033 \times 500 \div 50}{1.287 + 0.033 \times 500 \div 50} = 1.617 \text{ kg}$ Corsa cilindro.....500 mm

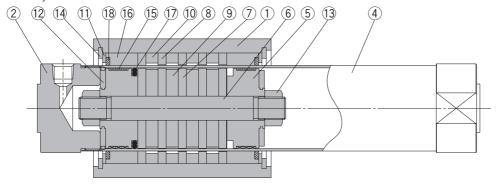
Serie CY3B

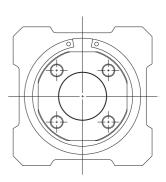

Costruzione

Base **CY3B6**






* Il disegno qui sopra si riferisce a ø15 (con ø10 vengono usati 3 magneti).


CY3B20 ÷ 40

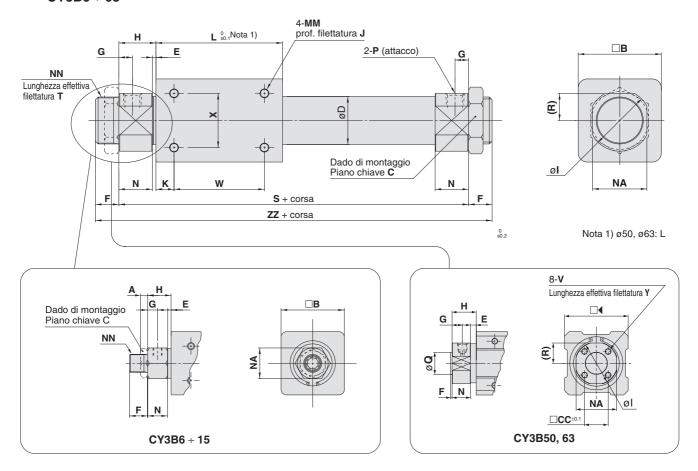
CY3B50, 63

Componenti

COI	пропени					
N.	Descrizione	Ma	ateriale		Nota	
1	Corpo	Lega d	'alluminio	Anodizzato duro		
2	Testata posteriore	ø6, ø10	Ottone	Niebalata		
		ø15 ÷ ø63	Lega d'alluminio	inichelato	per elettrolisi	
3	Collare finale	Lega d	'alluminio	Solo Ø	920 ÷ ø40	
4	Tubo cilindro	Accia	aio inox			
5	Pistone	ø6 ÷ ø15	Ottone	ø6 ÷ ø15	Nichelato per elettrolisi	
		ø20 ÷ ø63	Lega d'alluminio	ø20 ÷ ø63	Cromato	
6	Albero	Accia	aio inox			
7	Cursore del pistone	Accia	io rullato	Zinco cromato		
8	Brida laterale del cursore esterno	Accia	io rullato	Zinco	cromato	
9	Magnete A	Magnete	e terre rare			
10	Magnete B	Magnete	e terre rare			
11	Distanziale	Lega d	'alluminio	Anodizzato nero	(ø6: non disponibile)	
12	Paracolpi	Gomma	uretanica			
13	Dado pistone	Acciaio	al carbonio	ø6 ÷ ø15: ı	non disponibile	
14	Seeger tipo C per foro	Acciaio al car	bonio per utensili	Nic	helato	
15	Anello di tenuta A	Resina	speciale			
16	Anello di tenuta B	Resina	speciale			
17	Guarnizione di tenuta pistone	N	IBR			
18	Tenuta di lubrificazione	Resina	speciale	ø6: non	disponibile	
19	Guarnizione tubo cilindro C	l N	IBR	solo	ø6, ø10	

Parti di ricambio: kit guarnizioni

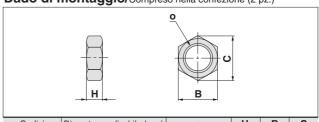
Diametro (mm)	Codice kit	Sommario				
6	CY3B6-PS	I numeri (15), (16), (17), (19) sopra				
10	CY3B10-PS	I numeri 15, 16, 17, 18, 19 sopra				
15	CY3B15-PS					
20	CY3B20-PS					
25	CY3B25-PS	Laurani (B. (B. (B. (B. anna				
32	CY3B32-PS	I numeri 15, 16, 17, 18 sopra				
40	CY3B40-PS					
50	CY3B50-PS					
63	CY3B63-PS					


^{*} I kit guarnizioni comprendono i componenti dal numero 15 al 19 e si ordinano mediante il codice di ciascun diametro.

Dimensioni

Base

CY3B6 ÷ 63



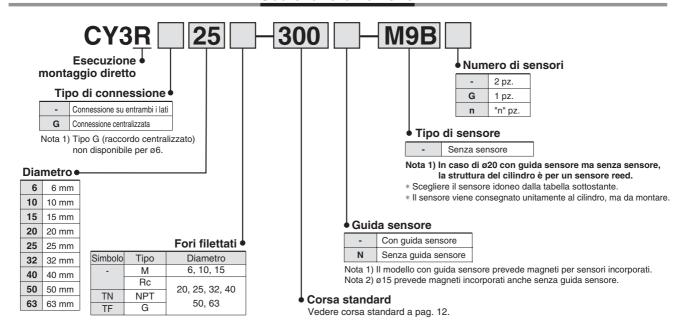
																						(mm)
Modello	Α	В	С	СС	D	Е	F	G	Н	I	J	K	L	MM	N	NA	NN	Q	R	G	Т	V
CY3B6	4	17	8*	_	7.6	4	8*	5	13.5*	_	4.5	5	35	МЗ	9.5*	10*	M6 *	_	_	62*	6.5	_
CY3B10	4	25	14	_	12	1.5	9	5	12.5	_	4.5	4	38	МЗ	11	14	M10 x 1	_	_	63	7.5	_
CY3B15	4	35	14	_	16.6*	2*	10	5.5	13	_	6	11	57	M4	11	17	M10 x 1	_	*	83	8	_
CY3B20	8	36	26	_	21.6*	2*	13	7.5*	20	28	6	8	66	M4	18 *	24	M20 x 1.5	_	12*	106	10	_
CY3B25	8	46	32	_	26.4*	2*	13	7.5*	20.5	34	8	10	70	M5	18.5*	30	M26 x 1.5	_	15*	111	10	
CY3B32	8	60	32	—	33.6*	2*	16	8*	22	40	8	15	80	M6	20 *	36	M26 x 1.5	_	18*	124	13	_
CY3B40	10	70	41	_	41.6*	3	16	11	29	50	10	16	92	M6	26 *	46	M32 x 2	_	23 *	150	13	_
CY3B50	_	86	_	32	52.4*	8	2	14	33	58*	12	25	110	M8	25	55	_	30 -0.007	27.5*	176	_	M8
CY3B63	—	100		38	65.4*	8	2	14	33	72*	12	26	122	M8	25	69	_	32 -0.007	34.5	188	_	M10

Madalla	۱۸/	w x y zz		P (attacco)			
Modello	VV	^	T		-	TN*	TF*
CY3B6	25	10	_	78*	M3 *	_	_
CY3B10	30	16	_	81	M5	_	_
CY3B15	35	19	_	103	M5	_	_
CY3B20	50	25	_	132	Rc 1/8	NPT 1/8	G 1/8
CY3B25	50	30	_	137	Rc 1/8	NPT 1/8	G 1/8
CY3B32	50	40	_	156	Rc 1/8	NPT 1/8	G 1/8
CY3B40	60	40	_	182	Rc 1/4	NPT 1/4	G 1/4
CY3B50	60	60	16	180	Rc 1/4	NPT 1/4	G 1/4
CY3B63	70	70	16	192	Rc 1/4	NPT 1/4	G 1/4

Nota 2) L'asterisco indica le dimensioni che differiscono dalla serie CY1B.

Dado di montaggio/Compreso nella confezione (2 pz.)

Codici	Diametro applicabile (mm)	0	Н	В	C
SNJ-006B	6	M6	4	8	9.2
SNJ-016B	10, 15	M10 x 1.0	4	14	16.2
SN-020B	20	M20 x 1.5	8	26	30
SN-032B	25, 32	M26 x 1.5	8	32	37
SN-040B	40	M32 x 2.0	10	41	47.3



Cilindro senza stelo ad accoppiamento magnetico: montaggio diretto

Serie CY3R

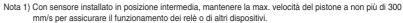
ø6, ø10, ø15, ø20, ø25, ø32, ø40, ø50, ø63

Codici di ordinazione

Sensori applicabili/II sensore applicabile si determina in base al diametro. Ulteriori informazioni da pag. 21 a pag. 23.

	0	0		Cablannia		Tensione d	i carico	Modello	Lunghe	ezza ca	vi (m)*	0			
Tipo	Speciale di allarme	Connessione di tenuta	LED	Cablaggio (uscita)		СС	ca	sensore	0.5 (-)	3 (L)	5 (Z)	Connettore precablato	Appli	olicazioni	
pee,			No	2 fili	04.1/	5 V, 12 V	≤ 100 V	A90	•		_	_	CI	Relè,	
ore I		Grommet	Sì		24 V	12 V	100 V	A93			_	_	_	PLC	
Sensore reed			31	3 fili (equiv. a NPN)	_	5 V	-	A96	•	•	_	_	CI	_	
용				3 fili (NPN)		5 V, 12 V		M9N			0	0	CI		
solido				3 fili (PNP)		J V, 12 V		M9P	•	•	0	0			
stato		Grommet	Sì	2 fili]	12 V	_	M9B		•	0	0	_	Relè,	
e st	Indicazione di	Grommet	31	3 fili (NPN)	24 V	5 V, 12 V		M9NW	•	•	0	0	CI	PLC	
Sensore	diagnostica			3 fili (PNP)]	J V, 12 V		M9PW	•	•	0	0			
Sel	(display bicolore)			2 fili		12 V		M9BW		•	0	0	_		

5 m.....Z (esempio) M9NZ


• Per -25 to 63. Oltre ai sensori elencati nella sezione "Codici di ordinazione" si possono montare altri modelli. Per ulteriori specifiche, vedere a pag. 18.

• I sensori allo stato solido sono altresi disponibili con connettore precablato. Per le specifiche vedere il catalogo "SMC Best Pneumatics".

Caratteristiche

Nota 2) Nel caso del montaggio verticale è impossibile effettuare una fermata intermedia con circuito pneumatico.

Corse standard

Diametro (mm)	Corsa standard (mm)	Corsa max. senza sensore (mm)	Corsa max. con sensore (mm)
6	50, 100, 150, 200	300	300
10	50, 100, 150, 200, 250, 300	500	500
15	50, 100, 150, 200, 250, 300, 350, 400, 450, 500	1000	750
20		1500	1000
25	100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800	1500	1200
32	300, 000, 700, 000		
40		2000	1500
50	100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000	2000	1500
63	300, 000, 700, 000, 000, 1000		

Nota 2) Quanto più lunga è la corsa, tanto maggiore sarà la flessione del tubo del cilindro. Prestare attenzione al valore del supporto di montaggio e dello spazio.

Forza di bloccaggio

Diametro (mm)	6	10	15	20	25	32	40	50	63
Forza di presa (N)	19.6	53.9	137	231	363	588	922	1471	2256
Nel calcolare la spinta effettiva, il progetto deve considerare la minima pressione d'esercizio									

ø6, ø10 100 Z 90 Spinta teorica (forza di mantenimento) 80 70 60 50 40 30 20 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Pressione d'alimentazione (Mpa)

Nota) I valori indicano quando il cilindro viene azionato

Forza teorica del cilindro

Esecuzioni speciali

(dettagli a pag. 24)

Caratteristiche idrauliche

Con giunto snodato

Min. pressione d'esercizio

0.16 0.16 0.16 0.16 0.15

Caratteristiche

Esterno del tubo del cilindro cromatato duro

10 15 20 25 32 40 50 63 Diametro (mm)

0.12 0.12 0.12

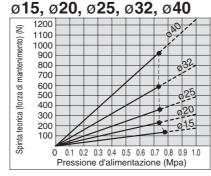
Specifiche intercambiabili con CY1 6

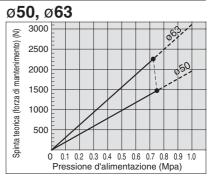
Simbolo

-X116

-X160 -X322

-X1468


-XC57


0.2

0.15

0.05

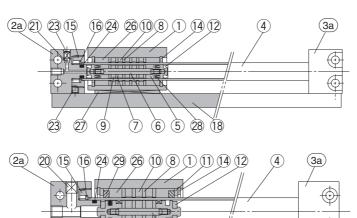
Μï.

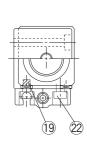
Peso Unità: kg

Diametro	Diametro (mm)			15	20	25	32	40	50	63
Peso base (a 0 mm)	Con guida sensore	0.086	0.111	0.272	0.421	0.622	1.217	1.98	3.54	5.38
Peso base (a 0 mm)	Senza guida sensore	0.069	0.08	0.225	0.351	0.542	1.097	1.82	3.25	5.03
Peso aggiuntivo per 50 mm	Con guida sensore	0.016	0.034	0.040	0.051	0.056	0.076	0.093	0.159	0.188
di corsa	Senza guida sensore	0.004	0.014	0.015	0.020	0.023	0.033	0.040	0.077	0.096

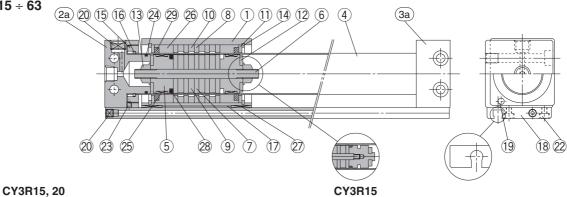
Metodo di calcolo/Esempio: CY3R25-500 (con guida sensore) $0.622 + 0.056 \times 500 \div 50 = 1.182 \text{ (kg)}$

Peso base.....0.622 (kg), peso aggiuntivo.....0.056 (kg/50 mm), corsa cilindro...500 (mm)


Serie CY3R


Costruzione

Connessione su entrambi i lati


CY3R6

CY3R10

CY3R15 ÷ 63

Componenti

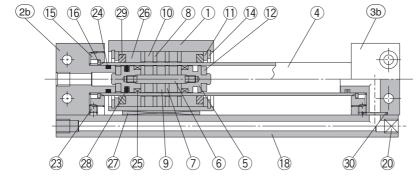
N.	Descrizione	Mat	teriale	Nota			
1	Corpo	Lega d	'alluminio	Anoc	lizzato duro		
2a	Testata posteriore A	Lega d	'alluminio	Nichelato per elettrolisi			
2b	Testata posteriore C	Lega d	'alluminio	Nichelat	o per elettrolisi		
За	Testata posteriore B	Lega d	'alluminio	Nichelat	o per elettrolisi		
3b	Testata posteriore D	Lega d	'alluminio	Nichelat	o per elettrolisi		
4	Tubo cilindro	Accia	aio inox				
5	Pistone	ø6 ÷ ø15	Ottone	ø6 ÷ ø15	Nichelato per elettrolisi		
		ø20 ÷ ø63	Lega d'alluminio	ø20 ÷ ø63	Cromato		
6	Albero	Accia	aio inox				
7	Cursore del pistone	Piastra in	acciaio rullato	Zinc	co cromato		
8	Cursore esterno	Piastra in	acciaio rullato	Zinc	co cromato		
9	Magnete A	Magnete	e terre rare				
10	Magnete B	Magnete	e terre rare				
11	Distanziale	Lega d	'alluminio	Anodizzato nero (ø6: non disponibile			
12	Paracolpi	Gomma	uretanica	Cro	mato zinco		
13	Dado pistone	Acciaio a	al carbonio		5: non disponibile) lichelato		
14	Seeger tipo C per foro	Acciaio al car	bonio per utensili	C	Cromato		
15	Anello di connessione	Lega d	'alluminio	C	Cromato		
16	Seeger C per asse	Filo ac	ciaio duro	(ø6, ø10:	non disponibile)		
17	Piastra schermo magnetico		in acciaio ıllato	Anodi	zzato bianco		
18	Guida sensore	Lega d	'alluminio				
19	Anello magnetico	Magnete	e terre rare	N	lichelato		
20	Tappo esagonale	Acciaio	al cromo				

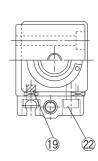
N.	Descrizione	Materiale		Nota					
21	Of	Acciaio al cromo	ø40	Tappo esagonale					
21	Sfere d'acciaio	Acciaio ai cromo	ø20, ø50, ø63	Assente					
22	Brugola	Acciaio al cromo	N	lichelato					
23	Brugola di regolazione	Acciaio al cromo	ı	lichelato					
24*	Guarnizione tubo cilindro	NBR							
25*	Anello di tenuta A	Resina speciale							
26*	Anello di tenuta B	Resina speciale							
27*	Anello di tenuta C	Resina speciale							
28*	Guarnizione di tenuta pistone	NBR							
29*	Tenuta di lubrificazione	Resina speciale							
30*	Guarnizione della guida del sensore	NBR	Connessione s	su entrambi i lati: Assente					
* k	* Lkit quarnizioni comprendono i componenti dal numero 24 al 30 e si								

^{*} I kit guarnizioni comprendono i componenti dal numero 24 al 30 e si ordinano mediante il codice di ciascun diametro.

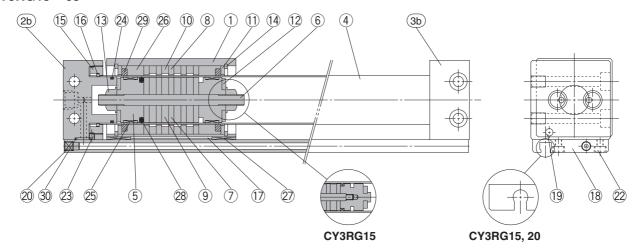
Parti di ricambio: kit guarnizioni

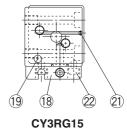
Diametro (mm)	Codice kit	Sommario
6	CY3R6-PS	I numeri 24, 26, 27, 28 sopra
10	CY3R10-PS	
15	CY3R15-PS	
20	CY3R20-PS	Numeri
25	CY3R25-PS	24, 25, 26, 27, 28, 29, 30
32	CY3R32-PS	sopra indicati
40	CY3R40-PS	
50	CY3R50-PS	
63	CY3B63-PS	

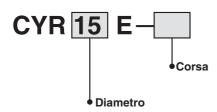

^{*} I kit guarnizioni sono gli stessi sia in caso di connessione distribuita sui due lati, sia in caso di connessione centralizzata.



Costruzione


Connessione centralizzata


CY3RG10



CY3RG15 ÷ 63

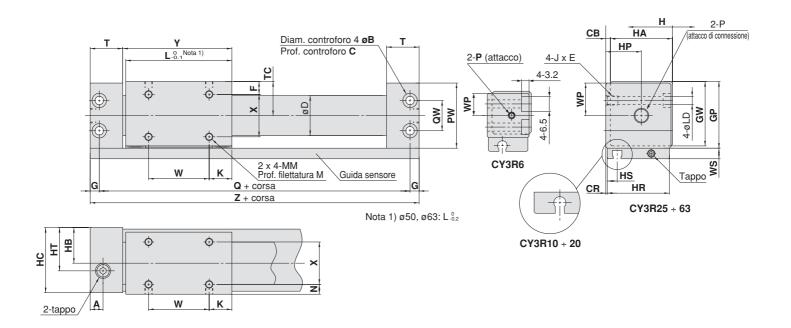
Accessori per guida sensori

Kit di accessori guida sensore

Diametro (mm)	Codice kit	Sommario
6	CYR6E-□-N	I numeri 18, 19, 22, 27 sulla sinistra
10	CYR10E-□	I numeri 18, 19, 20, 22, 2 sulla sinistra
15	CYR15E-□	Nota 2) I numeri ①, ⑱, ⑳, ㉑, ㉑, ㉑ sulla sinistra
Per sensori reed	CYR20E-□	
Per sensori allo stato solido	CYR20EN-□	
25	CYR25E-□	I numeri (7), (18), (19), (20), (22), (27)
32	CYR32E-□	sulla sinistra
40	CYR40E-□	
50	CYR50E-□	
63	CYR63E-□	
	6 10 15 Per sensori reed Per sensori allo stato solido 25 32 40 50	6 CYR6E-□-N 10 CYR10E-□ 15 CYR15E-□ Per sensori reed CYR20E-□ Per sensori allo stato solido CYR20EN-□ 25 CYR25E-□ 32 CYR32E-□ 40 CYR40E-□ 50 CYR50E-□

Nota 1) \square indica la corsa.

Nota 2) Magnete già incorporato per ø15.



Serie CY3R

Dimensioni

Connessione su entrambi i lati: $\emptyset 6 \div \emptyset 63$

Nota) Questa figura mostra i modelli con guida per sensore (-).

																				(mm)
Modello	Α	В	C	СВ	CR	D	F	G	GP	GW	Н	HA	НВ	НС	HP	HR	HS	HT	JxE	K
CY3R6	7*	*	_*	2	0.5	7.6	5.5	3*	20	18.5	19	17	10.5	18	10.5*	17	6	10.5*	M4 x 6	7
CY3R10	9	6.5	3.2	2	0.5	12	6.5	4	27	25.5	26	24	14	25	14	24	5	14	M4 x 6	9
CY3R15	10.5	8	4.2	2	0.5	16.6*	8	5	33	31.5	32	30	17	31	17	30	8.5	17	M5 x 7	14
CY3R20	9	9.5	5.2	3	1	21.6*	9	6	39	37.5	39	36	21	38	24	36	7.5	24	M6 x 8	11
CY3R25	8.5	9.5	5.2	3	1	26.4*	8.5	6	44	42.5	44	41	23.5	43	23.5	41	6.5	23.5	M6 x 8	15
CY3R32	10.5	11	6.5	3	1.5	33.6*	10.5	7	55	53.5	55	52	29	54	29	51	7	29	M8 x 10	13
CY3R40	10	11	6.5	5	2	41.6*	13	7	65	63.5	67	62	36	66	36	62	8	36	M8 x 10	15
CY3R50	14	14	8.2	5	2	52.4*	17	8.5	83	81.5	85	80	45	84	45	80	9	45	M10 x 15	25
CY3R63	15	14	8.2	5	3	65.4*	18	8.5	95	93.5	97	92	51	96	51	90	9.5	51	M10 x 15	24

Modello	L	LD	M	MM	N	PW	Q	QW	T	TC	W	WP	WS	Х	Υ	Z
CY3R6	34	3.5	3.5	M3	3.5	19	60*	10	14.5*	10.5	20	9.5	6	10	35.5	66*
CY3R10	38	3.5	4	M3	4.5	26	68	14	17.5	14	20	13	8	15	39.5	76
CY3R15	53	4.3	5	M4	6	32	84	18	19	17	25	16	7	18	54.5	94
CY3R20	62	5.4	5	M4	7	38	95	17	20.5	20	40	19	7	22	64	107
CY3R25	70	5.4	6	M5	6.5	43	105	20	21.5	22.5	40	21.5	7	28	72	117
CY3R32	76	7	7	M6	8.5	54	116	26	24	28	50	27	7	35	79	130
CY3R40	90	7	8	M6	11	64	134	34	26	33	60	32	7	40	93	148
CY3R50	110	8.6	10	M8	15	82	159	48	30	42	60	41	10	50	113	176
CY3R63	118	8.6	10	M8	16	94	171	60	32	48	70	47	10	60	121	188

Madalla		P (attacco)	
Modello	-	TN*	TF*
CY3R6	M3 *	_	_
CY3R10	M5	_	_
CY3R15	M5	_	_
CY3R20	Rc 1/8	NPT 1/8	G 1/8
CY3R25	Rc 1/8	NPT 1/8	G 1/8
CY3R32	Rc 1/8	NPT 1/8	G 1/8
CY3R40	Rc 1/4	NPT 1/4	G 1/4
CY3R50	Rc 1/4	NPT 1/4	G 1/4
CY3R63	Rc 1/4	NPT 1/4	G 1/4

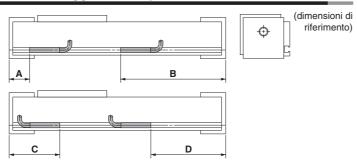
Nota 2) L'asterisco indica le dimensioni che differiscono dalla serie CY1R.

Dimensioni

Connessione centralizzata: Ø10 ÷ Ø63

																				(mm)
Modello	В	С	СВ	CR	D	F	G	GP	GW	Н	HA	НВ	НС	HP	HR	HS	HT	JxE	K	L
CY3RG10	6.5	3.2	2	0.5	12	6.5	4	27	25.5	26	24	14	25	_	24	5	_	M4 x 6	9	38
CY3RG15	8	4.2	2	0.5	16.6*	8	5	33	31.5	32	30	17	31	_	30	8.5	_	M5 x 7	14	53
CY3RG20	9.5	5.2	3	1	21.6*	9	6	39	37.5	39	36	21	38	11	36	7.5	28	M6 x 8	11	62
CY3RG25	9.5	5.2	3	1	26.4*	8.5	6	44	42.5	44	41	23.5	43	14.5	41	6.5	33.5	M6 x 8	15	70
CY3RG32	11	6.5	3	1.5	33.6*	10.5	7	55	53.5	55	52	29	54	20	51	7	41	M8 x 10	13	76
CY3RG40	11	6.5	5	2	41.6*	13	7	65	63.5	67	62	36	66	25	62	8	50	M8 x 10	15	90
CY3RG50	14	8.2	5	2	52.4*	17	8.5	83	81.5	85	80	45	84	32	80	9	56	M10 x 15	25	110
CY3RG63	14	8.2	5	3	65.4*	18	8.5	95	93.5	97	92	51	96	35	90	9.5	63.5	M10 x 15	24	118

Modello	LD	M	MM	N	PW	Q	QW	Т	TC	W	WP	WS	Х	Υ	Z
CY3RG10	3.5	4	M3	4.5	26	68	14	17.5	14	20	13	8	15	39.5	76
CY3RG15	4.3	5	M4	6	32	84	18	19	17	25	16	7	18	54.5	94
CY3RG20	5.4	5	M4	7	38	95	17	20.5	20	40	19	7	22	64	107
CY3RG25	5.4	6	M5	6.5	43	105	20	21.5	22.5	40	21.5	7	28	72	117
CY3RG32	7	7	M6	8.5	54	116	26	24	28	50	27	7	35	79	130
CY3RG40	7	8	M6	11	64	134	34	26	33	60	32	7	40	93	148
CY3RG50	8.6	10	M8	15	82	159	48	30	42	60	41	10	50	113	176
CY3RG63	8.6	10	M8	16	94	171	60	32	48	70	47	10	60	121	188


Maratalla		P (attacco)	
Modello	-	TN*	TF*
CY3RG10	M5	_	_
CY3RG15	M5	_	_
CY3RG20	Rc 1/8	NPT 1/8	G 1/8
CY3RG25	Rc 1/8	NPT 1/8	G 1/8
CY3RG32	Rc 1/8	NPT 1/8	G 1/8
CY3RG40	Rc 1/4	NPT 1/4	G 1/4
CY3RG50	Rc 1/4	NPT 1/4	G 1/4
CY3RG63	Rc 1/4	NPT 1/4	G 1/4

Nota 2) L'asterisco indica le dimensioni che differiscono dalla serie CY1RG.

Serie CY3R

Posizione di montaggio idonea per rilevamento di fine corsa

Campo di funzionamento sensori

Modello sensore	Diametro (mm)												
applicabile	6	10	15	20	25	32	40	50	63				
D-A9□	8	11	8	6	6	7	9	8	8				
D-M9□	3	4.5	2.5	3.5	3	3	4	3	3				
D-M9□W	4	7	4	4.5	4	4.5	5.5	5	4.5				
D-Z7□ D-Z80	_	_	_	_	9	9	11	9	10				
D-Y59□ D-Y7□ D-Y7□W	_	_	_	_	5	5	6	6	6				

- * In alcuni casi i sensori non possono essere installati.
- * I campi d'esercizio sono standard, compresa l'isteresi, e non sono garantiti (variazioni nell'ordine di ±30%). Possono verificarsi variazioni notevoli a seconda dell'ambiente circostante.

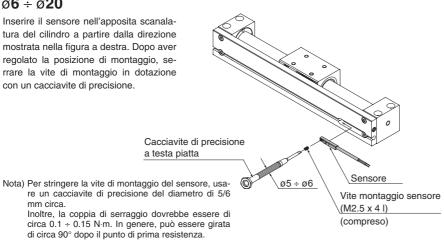
ø6, ø10, ø15	5, ø20							(mm)
Sensore		4		3)
Diametro (mm)	D-A9□	D-M9□ D-M9□W	D-A9	D-M9□ D-M9□W	D-A9	D-M9□ D-M9□W	D-A9	D-M9□ D-M9□W
6	26	30	46	42	46	42	26	30
10	28	32	48	44	48	44	_	32
15	17.5	21.5	76.5	72.5	_	_	56.5	60.5
20	19.5	23.5	87.5	83.5	39.5	35.5	67.5	71.5

Nota 1) Per il ø15 i sensori non possono essere istallati nell'area C.

Ø	i25, ø32, ø4	łu, øs	u, ø63										(mm)
	Sensore		-	4		E	3		()
	applicabile Diametro mm)		D-M9 D-M9 W	D-Z7 D-Y5 D-Y7P D-Z80 D-Y7 W	D-A9□	D-M9 D-M9 W	D-Z7 D-Y5 D-Y7P D-Z80 D-Y7 W	D-A9□	D-M9 D-M9 W	D-Z7 D-Y5 D-Y7P D-Z80 D-Y7 W	D-A9n	D-M9 D-M9 W	D-Z7 D-Y5n D-Z80 D-Y7P D-Y7 W
	25	19	23	18	98	94	99	42	38	43	75	79	74
	32	22.5	26.5	21.5	107.5	103.5	108.5	45.5	41.5	46.5	84.5	88.5	83.5
	40	24.5	28.5	23.5	123.5	119.5	124.5	47.5	43.5	48.5	100.5	104.5	99.5
	50	28.5	32.5	27.5	147.5	143.5	148.5	51.5	47.5	52.5	124.5	128.5	123.5
	63	30.5	34.5	29.5	157.5	153.5	158.5	53.5	49.5	54.5	134.5	138.5	133.5

Nota 1) la corsa minima disponibile è di 50 mm e prevede due sensori installati.

Nota 2) Le cifre della tabella qui sopra vengono usate come riferimento nel montaggio dei sensori di rilevamento fine corsa. In caso di impostazione dei sensori, regolarli

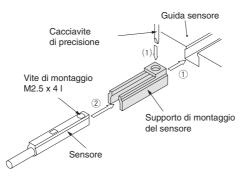

dopo averne verificato il funzionamento.

Nota 3) Per i modelli D-A9 , M9 e M9 W sono inoltre necessari supporti di montaggio. Fare riferimento al codice del supporto di montaggio del sensore a pag. 18.

Montaggio sensori

Ø6 ÷ Ø20

Inserire il sensore nell'apposita scanalatura del cilindro a partire dalla direzione mostrata nella figura a destra. Dopo aver regolato la posizione di montaggio, serrare la vite di montaggio in dotazione con un cacciavite di precisione.


Caratteristiche dei sensori

- (1) Al modello standard (senza guida) è possibile aggiungere sensori (con guida). La guida per sensori è citata a pag. 14 e può essere ordinata unitamente ai sensori.
- (2) Vedere le istruzioni di smontaggio per le procedure di istallazione magnetica dei sensori.

Ø25 ÷ Ø63

mm circa

- (1) Inserire la parte frontale del sensore nella scanalatura fino alla posizione desiderata.
- (2) Dopo aver verificato la posizione di rilevamento, stringere accuratamente la vite di montaggio (M2.5) sul sensore.
- (3) Durante il processo è necessario effettuare modifiche alla posizione di rilevamento (2).
- Nota) Per serrare la vite di montaggio usare un cacciavite di previsione con un manico del diametro di 5/6 mm e stringere con una coppia di 0.10 to 0.15 N·m. Come riferimento, un livello di serraggio accettabile si ottiene stringendo la vite di altri 90 gradi dopo il punto di prima resistenza.

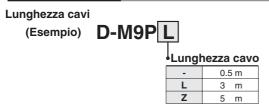
Codici degli accessori di montaggio

Diametro (mm)	Codici montaggio sensore	Peso	Sensori applicabili
25			Sensori reed:
32			D-A9□
40	BMG2-012	3 g	Sensore stato solido:
50			D-M9□
63			D-M9□W

Oltre ai sensori elencati nella sezione "Codici di ordinazione" si possono montare altri modelli. Per le specifiche vedere il catalogo "SMC Best Pneumatics".

Tipo	Modello	Entrata elettrica	Caratteristiche	Diametro applicabile
	D-Z73		_	
Sensore reed	D-Z76			
	D-Z80		Senza indicatore ottico	
	D-Y59A			
	D-Y59B	Grommet (in linea)	_	ø25 ÷ ø63
Sensore stato solido	D-Y7P			
Sensore state solido	D-Y7BW		Indicatora di diagnostica	
	D-Y7NW		Indicatore di diagnostica (display bicolore)	
	D-Y7PW		(display bicolore)	

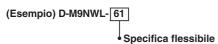
- Con connettore precablato, disponibile anche nei sensori allo stato solido. Per le specifiche vedere il catalogo "SMC Best Pneumatics"
- Disponibile inoltre sensore allo stato solido (tipo D-F9G/F9H/Y7G/Y7H), modello normalmente chiuso (NC = contatto b). Per ulteriori dettagli, consultare "SMC Best Pneumatics".



Caratteristiche dei sensori

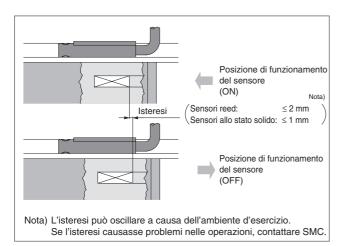
Caratteristiche dei sensori

Tipo	Sensore reed	Sensori stato solido		
Dispersione di corrente	Assente	3 fili: ≤ 100 μA 2 fili: ≤ 0.8 ms		
Tempo d'esercizio	1.2 ms ≤ 1 ms			
Resistenza agli urti	300 m/s2	1.000 m/s2		
Resistenza d'isolamento	≥ 50 MΩ a 500 Mega Vcc (tra cavo e corpo)			
Tensione di isolamento	1000Vac per 1 min (tra cavo e corpo)			
Temperatura	-10 ÷ 60°C			
Involucro	IEC529 standard IP67, struttura	a resistente all'acqua JIS C 0920		


Lunghezza cavi

Nota 1) Sensore applicabile con cavo da 5 m "Z". Sensori reed: assente.

Sensori allo stato solido: realizzato come standard su richiesta.


- Nota 2) La lunghezza standard dei cavi per sensori allo stato solido con LED bicolore impermeabile è di 3 metri (0.5 m non disponibile).
- Nota 3) Per indicare i sensori allo stato solido con caratteristiche flessibili, aggiungere "-61" dopo la lunghezza del cavo.

Nota) D-M9□ è una specifica per cavi flessibili di serie.

Isteresi dei sensori

L'isteresi è la differenza tra le posizioni del sensore acceso e spento. Parte del campo d'esercizio (un lato) comprende l'isteresi.

Box di protezione contatti CD-P11, CD-P12

<Modello di sensore applicabile>

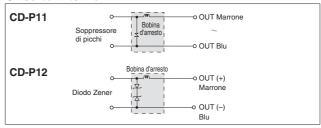
D-A9/Z7/Z8

I sensori sopra descritti non possiedono circuiti de protezione dai contatti interni.

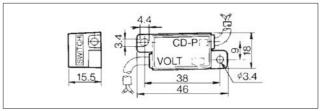
Si raccomanda di usare un box di protezione contatti nei seguenti casi:

- ① Il carico operativo è a induzione.
- ② La lunghezza di cablaggio fino al carico supera i 5 m.
- ③ La tensione di carico è di 100 Vca.

La vita utile dei contatti può ridursi (per il fatto di essere sempre sotto tensione).

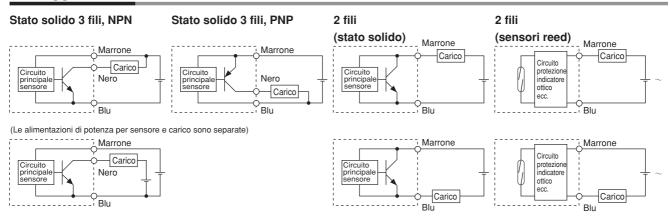

Caratteristiche

Codici	CD-	CD-P12	
Tensione di carico	100 Vca	200 Vca	24 Vcc
Max. corrente di carico	25 mA	12,5 mA	50 mA

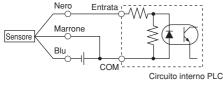

* Lunghezza cavo — Lato collegamento sensore $0.5 \, \mu$ Lato collegamento carico $0.5 \, \mu$

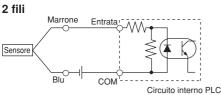
Circuito interno

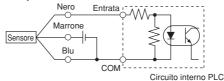
Dimensioni

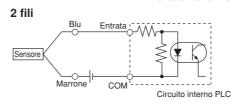

Connessione

Per collegare un sensore a un box di protezione dei contatti, unire il cavo sul lato del box di protezione dei contatti contrassegnato con SWITCH con il cavo che fuoriesce dal sensore. Tenere il sensore il più possibile vicino al box di protezione dei contatti, con un cavo lungo al massimo 1 metro.


Serie CY3 Esempi di collegamento sensori


Cablaggio basico


Esempio di connessione a PLC (Regolatore logico programmabile)


Caratteristiche dell'entrata deposito 3 fili, NPN

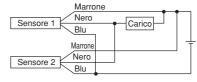
Caratteristiche dell'entrata sorgente 3 fili, PNP



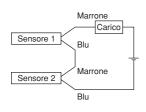
Realizzare il collegamento basandosi sulle caratteristiche di entrata PLC applicabili, poiché il metodo di connessione varia in base ad esse.

Esempio di connessione AND (seriale) e OR (parallela)

3 fili collegamento AND per uscita NPN (con relè)



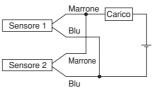
collegamento AND per uscita NPN (realizzato unicamente con sensori)



quando entrambi i sensori sono accesi.

Connessione OR per uscita NPN

Connessione AND a 2 fili con 2 sensori


Quando due sensori vengono collegati in serie, un carico può funzionare in modo difettoso a causa della diminuzione della tensione di carico che si verifica in condizione attivata.

Gli indicatori ottici si illuminano quando entrambi i sensori sono attivati.

Tensione di alimentazione_Caduta di tensione χ_{2pz} Tensione di carico in condizione OFF Tensione di carico in condizione OFF potenza interna = 24 V - 4 V x 2 pz. = 16 V

Esempio: alimentazione = 24 VCC. Caduta interna di tensione = 4V.

Connessione OR a 2 fili con 2 sensori

(Sensori stato solido)
Quando due sensori
vengono collegati in
parallelo, un carico
può funzionare in modo difettoso a causa
dell'aumento della
tensione di carico che
si verifica in condizione disattivata.

= corrente di fuga x 2 pz. x impendenza di carico = 1 mA x 2 pz. x 3 k = 6 V

Esempio: impedenza di carico = 3 k.

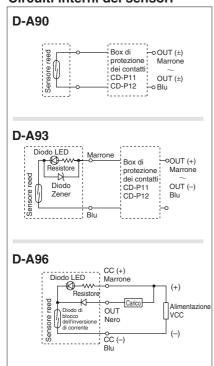
Corrente di fuga dall'interruttore = 1 mA.

(Sensori reed)
Poiché non vi è dispersione di corrente, la tensione di carico non aumenta quando viene disattivata. Tuttavia, a seconda del numero di sensori attivati, gli indicatori ottici possono spegnersi o non non accendersi a cuasa della dispersione e riduzione del flusso di corrente verso i sensori.

Sensori reed: montaggio diretto D-A90/D-A93/D-A96

(6

Grommet Direzione connessione elettrica: In linea

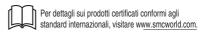


⚠ Precauzione

Precauzioni di funzionamento

Fissare il sensore con la vite già installata sul corpo del sensore. Se si utilizzano viti diverse da quelle fornite, il sensore può danneggiarsi.

Circuiti interni dei sensori


- Nota) ① Nei casi in cui il carico d'esercizio è un carico induttivo.
 - ② Nei casi in cui il carico di cablaggio è superiore a 5 m.
 - 3 Nei casi in cui la tensione di carico è di 100 VCA.

Usare il sensore con un box di protezione contatti nei casi sopraindicati

(per informazioni circa il box di protezione contatti, vedere a pag. 19).

Caratteristiche dei sensori

D ACC (seems indicators attice)

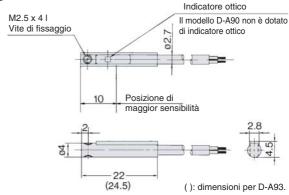
PLC:	Regolatore	logico	programmabile

D-A90 (senza indicatore ottico)						
Codice sensori	D-A90					
Applicazioni	Relè, circuito IC, PLC					
Tensione di carico	≤ 24 V ca/cc	≤ 48 V ca/cc	≤ 100 V ca/cc			
Max. corrente di carico	50 mA	40 mA	20 mA			
Circuito di protezione contatti		Assente				
Resistenza interna	≤ 1 (compresa una lunghezza cavo di 3 m)					
D-A93/D-A96 (con	indicatore o	ttico)				
Codice sensori	D- <i>A</i>	A93	D-A96			
Applicazioni	Relè	, PLC	CI			
Tensione di carico	24 Vcc	100 Vca	4 ÷ 8 Vcc			
Campo corrente di carico e max. corrente di carico	5 ÷ 40 mA	5 ÷ 20 mA	20 mA			
Circuito di protezione contatti	Assente					
Caduta di tensione interna	2.4 V max (÷ 20 mA)/3 V max (÷ 40 mA) ≤ 0,8 V					
Indicatore ottico	II LED 1	II LED rosso si illumina quando è su ON.				

Cav

D-A90/D-A93 – Cavo vinilico antiolio per cicli intensi: ø2.7, 0.18 mm2 x 2 fili (marrone, blu), 0.5 m D-A96 – Cavo vinilico antiolio per cicli intensi: ø2.7, 0.15 mm2 x 3 fili (marrone, nero, blu), 0.5 m Nota 1) Vedere caratteristiche comuni dei sensori a pag. 19.

Nota 2) Vedere lunghezza cavi a pag. 19.


Peso Unità: g

Codice sensori		D-A90	D-A93	D-A96
Lunghezza cavo	0.5	6	6	8
(m)	3	30	30	41

<u>Dimensioni</u>

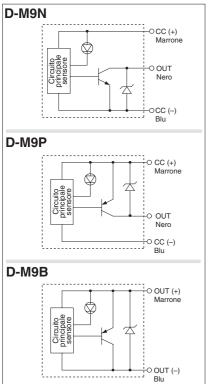
Unità: mm

D-A90/D-A93/D-A96

Sensori stato solido: montaggio diretto D-M9N/D-M9P/D-M9B (€

Grommet

- La corrente di carico a 2 fili è ridotta (2.5 ÷ 40 mA).
- Piombo esente
- Cavo conforme UL (modello 2844).



⚠ Precauzione

Precauzioni di funzionamento

Fissare il sensore con la vite già installata sul corpo del sensore. Se si utilizzano viti diverse da quelle fornite, il sensore può danneggiarsi.

Circuiti interni dei sensori

Caratteristiche dei sensori

Per dettagli sui prodotti certificati conformi agli standard internazionali, visitare <u>www.smcworld.com.</u>

		PLC: Regola	<u>tore logico programmabile</u>		
D-M91/D-M91V (con	indicatore ottic	:0)			
Codice sensori	D-M9N	D-M9P	D-M9B		
Direzione connessione elettrica		In linea			
Tipo di cablaggio	3	fili	2 fili		
Tipo di uscita	NPN	NPN PNP			
Applicazioni	Relè, circu	Relè, circuito IC, PLC			
Tensione d'alimentazione	5, 12, 24 Vcc	5, 12, 24 Vcc (4.5 ÷ 28 V)			
Consumo di corrente	≤ 10) ms	_		
Tensione di carico	≤ 28 VCC	_	24 VCC (10 ÷ 28 Vcc)		
Corrente di carico	≤ 40) ms	2.5 ÷ 40 mA		
Caduta di tensione interna	≤ 0.	≤ 4 V			
Dispersione di corrente	≤ 100 µA	≤ 0.8 ms			
Indicatore ottico	II LE	O rosso si illumina quando	è su ON.		

Cavi

Cavo vinilico antiolio ovale per cicli intensi: ø2.7 x 3.2

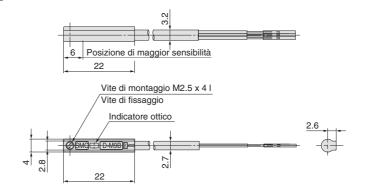
 $D\text{-M9B} \qquad 0.15 \text{ mm}^2 \text{ x 2 fili}$

D-M9N, D-M9P 0.15 mm² x 3 fili

Nota 1) Vedere caratteristiche comuni dei sensori a pag. 19.

Nota 2) Vedere lunghezza cavi a pag. 19.

Peso


Unità: g

Codice sensori		D-M9N	D-M9P	D-M9B
Lunghezza cavo (m)	0.5	8	8	7
	3	41	41	38
	5	68	68	63

Dimensioni

Unità: mm

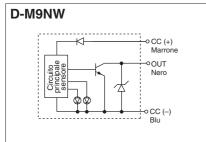
D-M9□

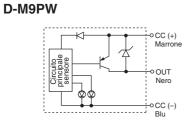
Sensori allo stato solido LED bicolore: montaggio diretto

D-M9NW/D-M9PW/D-M9BW

(

Grommet




⚠ Precauzione


Precauzioni di funzionamento

Fissare il sensore con la vite già installata sul corpo del sensore. Se si utilizzano viti diverse da quelle fornite, il sensore può danneggiarsi.

Circuiti interni dei sensori

Display | Verde

Rosso

Posizione d'esercizio

Caratteristiche dei sensori

PLC: Regolatore logico programmabile

D-M91W (cc	D-M91W (con indicatore ottico)							
Codice sensori	D-M9NW	D-M9BW						
Connessione elettrica		In linea						
Tipo di cablaggio	3	fili	2 fili					
Tipo di uscita	NPN	PNP	_					
Applicazioni	Relè, 0	CI, PLC	Relè 24 Vcc, PLC					
Tensione d'alimentazione	5, 12, 24 Vcc	_						
Consumo di corrente	≤ 10	≤ 10 ms						
Tensione di carico	≤ 28 Vcc	_	24 VCC (10 ÷ 28 Vcc)					
Corrente di carico	≤ 40 ms	≤ 80 ms	5 ÷ 40 mA					
Tensione interna interna	≤ 1,5 V (≤ 0.8 V a 10 mA di corrente di carico)	≤ 0,8 V	≤ 4 V					
Dispersione di corrente	≤ 100 μA	≤ 0.8 ms						
Indicatore ottico	Posizione di funzionamento Il LED rosso si illumina. Posizione ottimale di funzionamento							

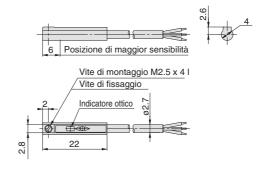
Cavi

Cavo vinilico per cicli intensi antiolio: ø2.7, 0.15 mm² x 3 fili (marrone, nero, blu),

 $0.18~\text{mm}^2~\text{x}~2~\text{fili}$ (marrone, blu), 0.5~m

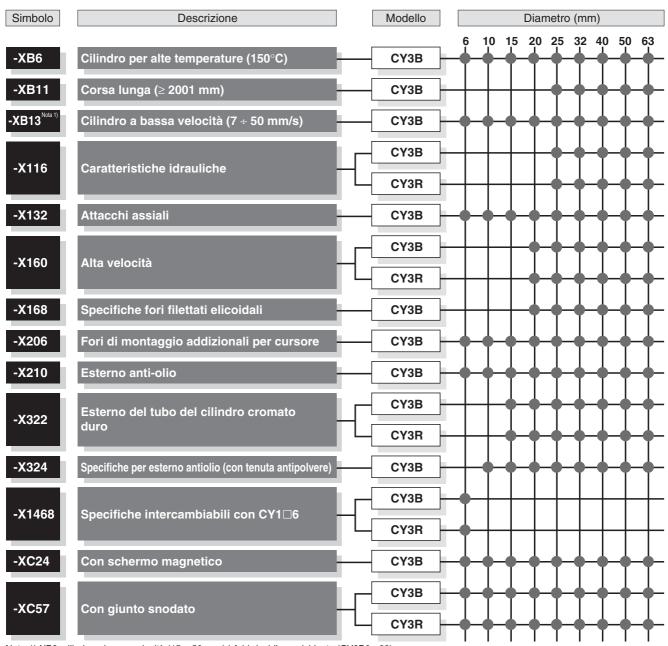
Nota 1) Vedere caratteristiche comuni dei sensori a pag. 19.

Nota 2) Vedere lunghezza cavi a pag. 19.


Peso Unità: g

Codice sensori		D-M9NW	D-M9PW	D-M9BW
Lunghezza cavo (m)	0.5	7	7	7
	3	34	34	32
	5	56	56	52

Dimensioni


Unità: mm

D-M9□W

Serie CY3B/CY3R Esecuzioni speciali

Contattare SMC per ulteriori dettagli su dati tecnici, tempi di consegna e prezzi.

Nota 1) XB9, cilindro a bassa velocità (15 ÷ 50 mm/s) fabbricabile su richiesta (CY3B6 - 63).

Nota 2) "Esecuzione speciale" singola applicabile unicamente al modello indicato sopra.

Esecuzioni su richiesta 1

(NI)

Contattare SMC per ulteriori dettagli su dati tecnici, tempi di consegna e prezzi.

Cilindro per alte temperature (150°C)

Simbolo

-XB6

CY3B Diametro Fori filettati Corsa -XB6

Cilindro resistente al calore

Caratteristiche

Serie applicabile	CY3B
Diametro	ø6 ÷ ø63
Temperatura d'esercizio	50 ÷ 150 C*
Max. pressione d'esercizio	0.5 MPa
Velocità pistone	50 ÷ 400 mm/s*

^{*} Se usato in un range inferiore ai 100°C potrebbe causare differenze nel ciclo di manutenzione, a seconda della velocità d'esercizio. Utilizzare a ≤ 200 mm/s.

Limite della pressione d'esercizio per fermata intermedia e funzionamento verticale

Max. pressione d'esercizio	per fermata intermedia	0.4 MPa*
----------------------------	------------------------	----------

^{*} Attenzione: l'accoppiamento magnetico si può rompere in caso di fermata intermedia mediante stopper estero con pressione d'esercizio superiore a 0.4 MPa.

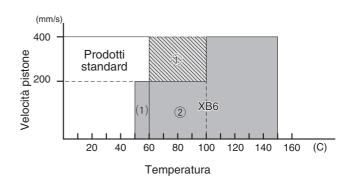
Forza di bloccaggio

		33	-						(14)
Diametro (mm)	6	10	15	20	25	32	40	50	63
Forza di mantenimento (a 150°C)	14.4	40.0	90.1	160	250	410	641	1000	1590
Forza di mantenimento (a 100°C)	17.2	47.9	107	192	299	490	766	1190	1900

2 Corsa lunga (≥ 2001 mm) -XB11

Fori filettati	Corsa	- <u>XB11</u>
	Fori filettati	Fori filettati - Corsa

Corsa lunga (da 2001 mm fino a corsa max. realizzabile)


Caratteristiche

Serie applicabile	CY3B
Diametro	ø25 ÷ ø63
Corsa applicabile	2001 mm ÷ corsa max. realizzabile

Nota) Contattare SMC per la consegna.

Campo di temperature per azionamento cilindro e velocità pistone

- (1) Per uso con temperatura d'esercizio compresa tra 60° e 100° C e una velocità del pistone di oltre 200 mm/s, consultare SMC.
- (2) Per uso con temperatura d'esercizio compresa tra 50° e 100° C e una velocità del pistone di oltre 200 mm/s, seguire le specifiche XB6.
- (3) Nel caso di XB6, per quanto riguarda il range di temperatura (da 50° a 60°C) che si sovrappone ai prodotti standard, considerare la tendenza della temperatura d'esercizio (limiti superiori e inferiori) quindi scegliere un modello.

Con temperature d'esercizio oscillanti tra $\leq 50^{\circ}$ C e $\geq 100^{\circ}$ C, la velocità di funzionamento risulterà molto limitata dalla durata. Prima dell'uso contattare SMC.

<Riferimento>

Il ciclo di manutenzione di XB6 potrebbe variare notevolmente a seconda della condizione d'esercizio e della temperatura ambiente. Anche se usato nel range raccomandato, azionarlo a intervalli di 1/2 rispetto ai prodotti standard.

CY3B Diametro Fori filettati Corsa -XB13

Specifiche a bassa velocità (7 ÷ 50 mm/s)

Non si verificano inceppamenti o scivolamenti nemmeno a velocità molto basse di $7 \div 50$ mm/s. Inoltre, non si verificano oscillazioni all'accensione e tutta la corsa risulta uniforme.

Caratteristiche

Serie applicabile	CY3B
Diametro	ø6 ÷ ø63
Velocità pistone	7 ÷ 50 mm/s

Esecuzioni su richiesta 2

Contattare SMC per ulteriori dettagli su dati tecnici, tempi di consegna e prezzi.

Simbolo Caratteristiche idrauliche

CY3B Diametro Corsa

Caratteristiche idrauliche

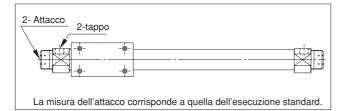
Idoneo per alimentazione a bassa velocità, fermata intermedia e alimentazione alternata del cilindro.

Caratteristiche

Serie applicabile	CY3B/CY3R
Diametro	ø25 ÷ ø63
Fluido	Olio per turbine
Velocità pistone	15 ÷ 300 mm/s

Nota 1) La serie CY3R è disponibile solo con connessione su entrambi i lati.

Nota 2) Per fermate intermedie con circuito idro-pneumatico, impostare l'energia cinetica del carico in modo tale che non oltrepassi il valore ammissibile. (Riguardo al valore ammissibile, vedere il capitolo "Fermate intermedie" in ciascuna serie)


Simbolo Attacchi assiali (132

L'attacco di alimentazione pneumatica è stato spostato sulla testata posteriore in posizione assiale.

Caratteristiche

Serie applicabile	СҮЗВ
Diametro	ø6 ÷ ø63

Simbolo

Rende possibile un azionamento del pistone ad una velocità di 1500mm/s (senza carico).

Caratteristiche

Serie applicabile	CY3B/CY3R
Diametro	ø20 ÷ ø63
Velocità pistone (senza carico)	1.500 mm/s

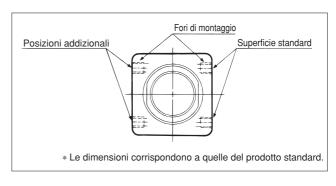
Nota 1) Per azionamento ad alta velocità, installare un deceleratore. Nota 2) La serie CY3R è disponibile solo con connessione su entrambi i la-

Le filettature di montaggio standard sono state sostituite da fori filettati eli-

Caratteristiche

Serie applicabile	СҮЗВ
Diametro	ø20 ÷ ø63

-X206 Fori di montaggio addizionali per cursore



Fori di montaggio addizionali per cursore

I fori di montaggio sono stati situati sulla superficie di montaggio opposta alle posizioni standard.

Caratteristiche

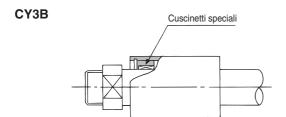
Serie applicabile	CY3B
Diametro	ø6 ÷ ø63

-X160

Esecuzioni su richiesta 3

Contattare SMC per ulteriori dettagli su dati tecnici, tempi di consegna e prezzi.

9 Esterno anti-olio -X210



Idoneo in ambienti che non tollerano l'olio. Senza tenuta di lubrificazione installata. Una versione a parte di -X324 (con tenuta antipolvere) è disponibile per applicazioni in presenza di polvere ecc.

Caratteristiche

Serie applicabile	СҮЗВ
Diametro	ø6 ÷ ø63

Costruzione

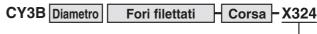
10 Esterno del tubo del cilindro cromatato duro -X322

L'esterno del tubo del cilindro è cromatato duro per ridurre l'usura dei cuscinetti.

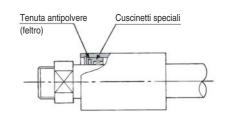
Caratteristiche

Serie applicabile	CY3B/CY3R
Diametro	ø15 ÷ ø63

- * Fornire misure di assorbimento urti a fine corsa.
- Nota 1) Le corse max. realizzabili sono uguali a quelle dei prodotti standard. Per ø50 e ø63 della serie CY3B, le corse max. realizzabili sono disponibili fino a 4000 mm.
- Nota 2) Per ordinare un cilindro con una corsa minima di 2001 mm, aggiungere il suffisso -XB11X322 a fine codice.


Costruzione

Specifiche per esterno antiolio (con tenuta antipolvere)


Questa unità specifiche per esterno antiolio con guarnizione antipolvere sul corpo del cilindro.

Caratteristiche

Serie applicabile	СҮЗВ
Diametro	ø10 ÷ ø63

Costruzione

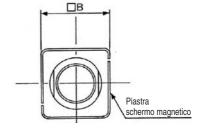
CY3B

Simbolo Specifiche intercambiabili con CY1□6 -X1468

Specifiche intercambiabili con CY1□6

Dimensioni di montaggio intercambiabili con CY1 \square 6.

13 Con schermo magnetico -XC24


Con schermo magnetico

Schermi contro il trafilamento magnetico da cursori esterni.

Caratteristiche

Serie applicabile	CY3B
Diametro	ø6 ÷ ø63

Dimensioni

Dimensioni				Diam	etro (r	nm)			
Dimensioni	ø 6	ø 10	ø 15	ø 20	ø 25	ø 32	ø 40	ø 50	ø 63
□В	19	27	37	38	48	62	72	88	102
Esterno standard (□B)	17	25	35	36	46	60	70	86	100

^{*} Le dimensioni non indicate sopra corrispondono a quelle del tipo base.

Esecuzioni su richiesta 4

Contattare SMC per ulteriori dettagli su dati tecnici, tempi di consegna e prezzi.

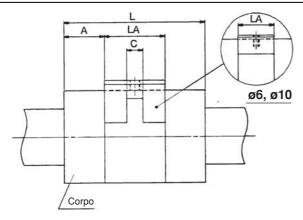
14 Con giunto snodato (CY3B)

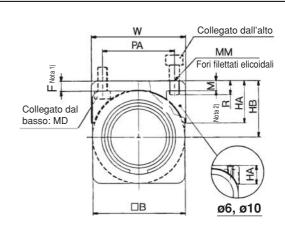
Simbolo

-XC57

CY3B Diametro Fori filettati Corsa XC57

Caratteristiche


Diametro ø6 ÷ ø63


Nota) Il corpo di questo cilindro è stato progettato per essere collegato al giunto snodato e non può essere collegato al corpo dei prodotti standard. Se ciò fosse necessario, contattare SMC.

Alla serie CY3B viene aggiunto uno speciale giunto snodato che riduce il lavoro di connessione delle guide sull'altro asse (lato del carico).

Il collegamento della vite al giunto snodato e al carico è possibile dall'alto o dal basso (per i diametri ø6 e ø10 il collegamento è possibile solo dall'alto).

Dimensioni

														(mm)
Modello	Α	□в	С	F*Nota 1)	HA	НВ	L	LA	MM	MD	М	PA	R Nota 2)	W
6	10	17	_	2.5	6.3	11	35	15	M3 x 3 l	_	_	12	_	18
10	10	25	_	2.5	9.5	15	38	18	M3 x 3 I	_	_	17	_	26
15	16	35	6.5	5.5	16.5	23	57	25	M4	МЗ	4	25	6	36
20	18	36	6.5	5.5	17	23.5	66	30	M5	МЗ	4	27	6	37
25	20	46	8.0	5.5	21	28.5	70	30	M6	M4	5	36	7	47
32	22.5	60	9.5	6.0	27.5	36	80	35	M6	M5	6	47	8	61
40	26	70	9.5	6.0	28.5	41	92	40	M6	M5	6	55	8	71
50	35	86	11	6.0	35	49	110	40	M8	M6	8	65	11	87
63	36	100	18	7.0	42	57	122	50	M8	M6	10	80	11	101

Nota 1) La dimensione F fornisce uno spazio di 1mm tra il corpo e il giunto snodato, ma non tiene conto della flessione del peso morto del tubo del cilindro, ecc. Per azionarlo, bisogna impostare il valore idoneo che prenda in considerazione la flessione dovuta al proprio peso e le variazioni di allineamento rispetto agli altri assi. (Vedere flessione dovuta al peso nella tabella a pag. 5).

Nota 2) Prestare particolare attenzione in caso di collegamento dal lato superiore e azionamento a partire dalla dimensione R o più in alto (≥ 3 mm per ø6 e ø10), poiché la punta della vite entrerà in contatto con il corpo e in alcuni casi lo snodo potrebbe non essere effettivo.

Esecuzioni su richiesta 5

Contattare SMC per ulteriori dettagli su dati tecnici, tempi di consegna e prezzi.

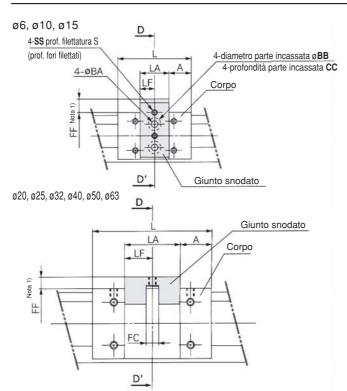
15 Con giunto snodato (CY3R)

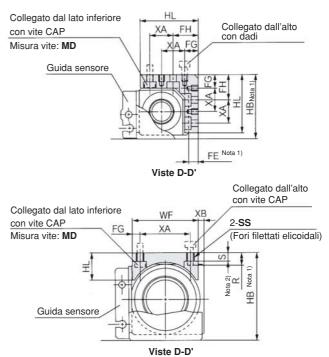
Simbolo

-XC57

CY3R(G) Diametro Fori filettati Corsa XC57

Caratteristiche


Diametro ø6 ÷ ø63


Nota) Il corpo di questo cilindro è stato progettato per essere collegato al giunto snodato e non può essere collegato al corpo dei prodotti standard. Se ciò fosse necessario, contattare SMC.

Alla serie CY3R viene aggiunto uno speciale giunto snodato che riduce il lavoro di connessione delle guide sull'altro asse (lato del carico). Il collegamento della vite al giunto snodato e al carico è possibile dall'alto o

Dimensioni

dal basso

(mm)

																					()
Diametro	Α	ВА	ВВ	СС	FC	FE Nota 1	FF Nota 1)	FG	FH	HB Nota 1	HL	L	LA	LF	MD	R Nota 2)	G	SS	WF	XA	ХВ
6	9.5	3.4	6.5	3.3	_	5	7	5.5	10.5	26	23	34	15	7.5	М3	_	3.5	М3	_	10	_
10	11.5	3.4	6.5	3.3	_	5	7	7	13	33	30	38	15	7.5	М3	_	3.5	М3	_	12	_
15	18	4.5	8	4.4	_	4.5	6.5	7.5	14.5	38.5	35.5	53	17	8.5	M4	_	4.5	M4	_	14	_
20	16.5	_	_	_	6.5	_	6	4	_	45	14	62	29	14.5	М3	7	4.5	M4	34	26	3
25	20.5	_	_	_	8	_	7	4	_	51	17	70	29	14.5	M4	8	5.5	M5	39	31	3
32	21	_	_	_	9.5	_	7.5	4.5	_	62.5	22	76	34	17	M5	10	6.5	М6	50	41	3
40	25.5	_	_	—	9.5	_	7.5	7.5	_	74.5	28	90	39	19.5	M5	10	6.5	М6	60	45	3
50	35.5	_	l —	_	11	_	7.5	9	_	92.5	38	110	39	19.5	М6	15	10	M8	78	60	3
63	34.5	_	_	_	18	_	7.5	10	_	104.5	39	118	49	24.5	M6	15	10	M8	90	70	3

Nota 1) FE, FF e HB prevedono 1mm tra il corpo e il giunto snodato, ma non tengono conto della flessione del peso morto del tubo del cilindro, ecc. Per l'azionamento, impostare il valore idoneo prendendo in considerazione la flessione dovuta al proprio peso e le variazioni di allineamento rispetto agli altri assi (vedere flessione dovuta al peso nella tabella a pag. 5).

Nota 2) Prestare particolare attenzione se viene collegato dal lato superiore e viene azionato all'altezza della dimensione R o più in alto, poiché la punta della vite entrerà in contatto con il corpo e in alcuni casi lo snodo potrebbe non essere effettivo.

Le istruzioni di sicurezza servono per prevenire situazioni pericolose e/o danni alle apparecchiature. Il grado di pericolosità è indicato dalle etichette di "Precauzione", "Attenzione" o "Pericolo". Per garantire la sicurezza, osservare le norme ISO 4414 Nota 1), JIS B 8370 Nota 2) e altre norme di sicurezza.

■Spiegazione delle diciture

Diciture Spiegazione delle diciture							
⚠ Pericolo	in condizioni estreme possono verificarsi lesioni gravi o morte.						
	l'errore di un operatore può causare lesioni serie o morte.						
⚠ Precauzione	indica che l'errore dell'operatore potrebbe causare lesioni alle persone o danni alle apparecchiature.						

- Nota 1) ISO 4414: Pneumatica Regole generali relative ai sistemi.
- Nota 2) JIS B 8370: Regole generali per impianti pneumatici
- Nota 3) Il termine lesione indica ferite leggere, scottature e scosse elettriche che non richiedono il ricovero in ospedale o visite ospedaliere che comportino lunghi periodi di cure mediche.

■Selezione/Uso/Applicazioni

- 1. Il corretto impiego delle apparecchiature pneumatiche all'interno di un sistema è responsabilità del progettista del sistema o di chi ne definisce le specifiche tecniche.
 - Dal momento che i componenti pneumatici possono essere usati in condizioni operative differenti, il loro corretto impiego all'interno di uno specifico sistema pneumatico deve essere basato sulle loro caratteristiche tecniche o su analisi e test studiati per l'impiego particolare. La responsabilità relativa alle prestazioni e alla sicurezza è del progettista che ha stabilito la compatibilità del sistema. Questa persona dovrà verificare continuamente l'idoneità di tutti i componenti specificati, in base al catalogo più recente e considerando ogni possibile errore dell'impianto in corso di progettazione.
- 2. Si raccomanda che solo personale specializzato lavori con macchinari ed impianti pneumatici.

 L'aria compressa può essere pericolosa se utilizzata in modo scorretto. L'assemblaggio, l'utilizzo e la manutenzione di sistemi pneumatici devono essere effettuati esclusivamente da personale esperto e specificamente istruito.
- 3. Non intervenire sulla macchina o impianto senza aver verificato la sicurezza delle condizioni di lavoro.
 - 1. L'ispezione e la manutenzione della macchina/impianto possono essere effettuati solo ad avvenuta conferma dell'attivazione delle posizioni di blocco di sicurezza specificamente previste.
 - 2. Prima di intervenire su un singolo componente, assicurarsi che siano attivate le posizioni di blocco in sicurezza di cui sopra. L'alimentazione pneumatica deve essere sospesa e l'aria compressa residua presente nel sistema deve essere scaricata.
 - 3. Prima di riavviare la macchina/impianto, prendere precauzioni per evitare attuazioni istantanee pericolose (fuoriuscite di steli di cilindri pneumatici, ecc.).
- 4. Se si prevede di utilizzare il prodotto in una delle seguenti condizioni, contattare SMC:
 - 1. Condizioni operative e ambienti non previsti dalle specifiche fornite, oppure impiego del componente all'aperto.
 - 2. Installazioni su impianti ad energia atomica, ferrovia, navigazione aerea, veicoli, impianti medici, cibo e bevande, impianti ricreativi, circuiti di fermata d'emergenza, presse o impianti di sicurezza.
 - 3. Applicazioni nelle quali potrebbe avere effetti negativi su persone, animali o cose, che richiedano una speciale sicurezza.
 - 4. Se i prodotti sono utilizzati in un circuito di sincronizzazione, prevedere un doppio sistema di sincronizzazione con una funzione di protezione meccanica per evitare una rottura. Esaminare periodicamente i dispositivi per verificare se funzionano normalmente.

■Esonero di responsabilità

- SMC, i suoi dirigenti ed impiegati saranno esonerati da qualsiasi responsabilità per perdite o danni causati da terremoti o incendi, atti di terzi, incidenti, errori dei clienti intenzionali o non intenzionali, utilizzo scorretto del prodotto e qualsiasi altro danno causato da condizioni di esercizio diverse da quelle previste.
- 2. SMC, i suoi dirigenti ed impiegati saranno esonerati da qualsiasi responsabilità per perdite o danni diretti o indiretti, inclusi perdite o danni consequenziali, perdite di profitti o mancate possibilità di guadagno, reclami, richieste, procedimenti, costi, spese, premi, valutazioni e altre responsabilità di qualsivoglia natura inclusi costi e spese legali nelle quali sia possibile intercorrere, anche nel caso di torto (inclusa negligenza), contratto, violazione di obblighi stabiliti dalla legge, giustizia o altro.
- 3. SMC è esonerata da qualsiasi responsabilità per danni derivanti da operazioni non indicate nei cataloghi e/o nei manuali di istruzioni, e operazioni esterne alle specifiche indicate.
- 4. SMC è esonerata da qualsiasi responsabilità derivante da perdita o danno di qualsivoglia natura causati da malfunzionamenti dei suoi prodotti qualora questi ultimi vengano utilizzati insieme ad altri dispositivi o software.

Scelta e progettazione

∧ Attenzione

1. Verificare le caratteristiche.

Per usare il prodotto in modo adeguato, leggere attentamente le caratteristiche. Il prodotto utilizzato con valori non compresi nei campi specificati della corrente di carico, tensione, temperatura o impatto, può danneggiarsi. Non assicuriamo alcun risarcimento nel caso in cui il prodotto venga usato al di fuori del range delle specifiche.

Controllare il lasso di tempo che il sensore resta acceso in posizione di corsa intermedia.

Quando il sensore si trova in posizione intermedia rispetto alla corsa e il carico viene azionato nel momento in cui passa il pistone, detto sensore entrerà in funzionamento, ma se la velocità è troppo elevata, il tempo d'esercizio diminuirà e il carico non opererà adeguatamente. La massima velocità rilevabile del pistone è:

3. Mantenere i cavi più corti possibile.

<Sensori reed>

Quanto maggiore è la lunghezza di cablaggio al carico, maggiore sarà la corrente di spunto per l'attivazione del sensore. Tale circostanza può ridurre la durata del prodotto. (il sensore rimane sempre in funzionamento). Se il cavo è lungo 5 m minimo, utilizzare un box di protezione contatti.

<Sensori stato solido>

Nonostante la lunghezza del cavo non influisca sul funzionamento del sensore, utilizzare un cavo di massimo 100 m.

4. Non applicare un carico generante un picco di tensione. Se si genera un picco di tensione, la scarica si verifica nel contatto, abbreviandone la vita utile.

<Sensori reed>

Se si aziona con carichi che generano picchi di tensione, per esempio relè, impiegare un sensore dotato di contatto di protezione circuiti o un box di protezione contatti.

<Sensori stato solido>

Benché il lato di uscita del sensore allo stato solido sia protetto da un diodo zener soppressore di picchi, in caso di picchi ripetuti potrebbe non essere efficace. In caso di azionamento diretto di un carico generante picchi, come per esempio un relè o un'elettrovalvola, utilizzare un sensore dotato di soppressore di picchi.

5. Precauzioni per uso in circuito di sincronizzazione

Se il sensore è destinato a segnale di sincronizzazione ad alta affidabilità, costituire un doppio sistema di sincronizzazione per porsi al riparo da malfunzionamenti, mediante funzione di protezione meccanica o utilizzando un altro commutatore in aggiunta al sensore. Realizzare una manutenzione periodica e verificare che le operazioni si svolgano correttamente.

6. Non modificare il prodotto.

Non smontare il prodotto. Rischio di lesioni e incidenti.

♠ Precauzione

Adottare le dovute misure con l'uso ravvicinato di più attuatori.

Nel caso di due o più attuatori sensori operanti a distanza ravvicinata, le interferenze del campo magnetico possono causare malfunzionamenti dei sensori. Mantere i cilindri a una distanza di almeno 40 mm l'uno dall'altro (ri-spettare il valore eventualmente indicato per ciascuna serie di cilindri nei rispettivi cataloghi).

2. Vigilare la caduta di tensione interna del sensore.

<Sensori reed>

- 1) Sensori con indicatore ottico (Eccetto D-A96, Z76)
 - Se i sensori sono collegati in serie come mostrato di seguito, si verificherà una forte caduta di tensione a causa della resistenza interna dei diodi luminosi (vedere caduta di tensione interna tra le specifiche tecniche dei sensori).

[La caduta di tensione sarà "n" volte superiore se "n" sensori sono collegati]

Benché il sensore operi normalmente, il carico potrebbe non funzionare.

 Allo stesso modo, lavorando al di sotto di una tensione specifica, nonostante il sensore funzioni con normalità, il carico potrebbe non azionarsi. Pertanto, attenersi alla formula indicata sotto dopo aver confermato la minima tensione d'esercizio del carico.

Alimentazione Caduta tensione Minima tensione tensione interna sensore d'esercizio del carico

Se la resistenza interna del diodo luminoso causasse problemi, selezionare un sensore senza indicatore ottico (Modello D-A90, Z80).

<Sensori stato solido>

 Generalmente, la caduta di tensione interna sarà maggiore con un sensore allo stato solido a 2 fili che con un sensore reed. Adottare le stesse precauzioni indicate in 1).

Inoltre, il relè da 12VCC non è applicabile.

Prestare attenzione alla dispersione di corrente. Sensori stato solido>

Con un sensore allo stato solido a 2 fili, la corrente (corrente di fuga) fluisce verso il carico per azionare il circuito interno anche in condizione OFF.

Corrente d'esercizio del carico (condizione OFF) > Corrente di fuga

Se la condizione indicata nella formula sopra non viene soddisfatta, il sensore non verrà reiniziato correttamente (resta ON). Eventualmente, utilizzare un sensore a 3 cavi.

Inoltre il flusso di corrente di trafilamento sarà "n" volte superiore con "n" sensori collegati in parallelo.

4. Prevedere spazio sufficiente per le attività di manutenzione

Per progettare un'applicazione, assicurare sempre uno spazio sufficiente per la manutenzione e i controlli.

Montaggio/Regolazione

∧ Attenzione

1. Manuale d'istruzioni

Installare ed usare i prodotti solo dopo aver letto e compreso le istruzioni presenti nel manuale. Tenere sempre il manuale a portata di mano.

2. Proteggere da urti o cadute.

NProteggere da urti, cadute o impatti eccessivi (\geq 300 m/s2 per sensori reed e \geq 1.000 m/s2 per sensori allo stato solido). Sebbene il corpo del sensore non presenti danni, l'interno potrebbe essere danneggiato e causare malfunzionamenti.

Montare i sensori usando l'adeguata coppia di serraggio.

Se un sensore viene serrato applicando una coppia di serraggio al di fuori del campo prescritto, le viti di montaggio, i supporti di montaggio o il sensore possono danneggiarsi. Un serraggio inferiore alla coppia prescritta può provocare lo spostamento del sensore dalla sua posizione. Per il montaggio del sensore, la coppia di serraggio, ecc. consultare i relativi paragrafi di ciascuna serie

4. Montare il sensore applicando un valore medio all'interno del campo d'esercizio.

Regolare la posizione di montaggio di un sensore in modo tale che il pistone si fermi al centro del campo d'esercizio (il campo entro il quale il sensore è acceso).

(le posizioni di montaggio mostrate nel catalogo indicano la posizione ottimale a fine corsa). Se si monta il sensore al limite del campo di funzionamento (sul confine tra ON e OFF) l'operazione sarà poco stabile.

<D-M9□>

Se il sensore D-M9 viene usato per sostituire sensori di serie precedenti, potrebbe non attivarsi a seconda delle condizioni di funzionamento, a causa del campo d'esercizio ridotto.

Ad esempio:

- Applicazioni in cui la posizione d'arresto dell'attuatore possa variare e superare il campo d'esercizio del sensore, ad esempio operazioni di spinta, pressione, presa, ecc.
- Applicazioni in cui il sensore venga usato per rilevare una posizione d'arresto intermedia dell'attuatore (in tal caso il tempo di rilevamento viene ridotto.)

In tali applicazioni il sensore deve essere impostato al centro del campo di rilevamento specificato.

5. Riservare spazio per la manutenzione.

Per l'installazione del prodotto, prevedere uno spazio sufficiente per la manutenzione.

Montaggio/Regolazione

♠ Precauzione

 Non trasportare l'attuatore afferrandolo dai cavi del sensore.

Non trasportare un cilindro (attuatore) afferrandolo dai cavi. Ciò potrebbe causare non solo la rottura dei cavi, ma anche il danneggiamento degli elementi interni del sensore.

 Fissare il sensore con la vite idonea installata sul corpo del sensore. Se si utilizzano altre viti, il sensore risulterà danneggiato.

Cablaggio

! Attenzione

1. Verificare che l'isolamento dei cavi sia corretto.

Verificare che non vi siano difetti di isolamento (contatto con altri circuiti, errori di messa a terra, isolamento inadeguato tra terminali, ecc). Un eccesso di flusso di corrente nel sensore potrebbe provocare danni.

 Non collegare i cavi in corrispondenza di linee di potenza o di alta tensione.

Cablare separatamente dalle linee di potenza o le linee di alta tensione, evitando cablaggi paralleli o cablaggi nello stesso condotto di queste linee. I circuiti di controllo che comprendono sensori possono malfunzionare a causa di rumore proveniente da queste altre linee.

1. Evitare di tirare e piegare ripetutamente i cavi.

I cavi ripetutamente piegati o tirati possono rompersi.

2. Collegare il carico prima di alimentare con potenza.

<Tipo a 2 fili>

Se viene attivata la potenza quando ancora uno dei sensori non è stato collegato al carico, il sensore verrà danneggiato all'istante a causa dell'eccesso di corrente.

3. Non permettere il corto circuito dei carichi.

<Sensori reed>

Se la potenza viene attivata con un carico in condizione di corto circuito, il sensore verrà istantaneamente danneggiato a causa di un eccesso di corrente in entrata al sensore.

<Sensori stato solido>

I modelli D-M9 \square , M9 \square W e tutti i modelli di uscita PNP non sono dotati di circuiti integrati di protezione da corto circuiti. Se i carichi sono cortocircuitati, i sensori verranno immediatamente danneggiati, come nel caso dei sensori reed.

Evitare con ogni cura di invertire il cablaggio con la linea di alimentazione (marrone) e la linea di uscita (nera) su sensori a 3 fili.

Cablaggio

^ Precauzione

4. Evitare cablaggi scorretti.

<Sensori reed>

Un sensore a 24VCC con indicatore ottico ha polarità. Il cavo marrone è (+) e il cavo blu è (-).

1) Se i collegamenti vengono invertiti, il sensore continuerà a funzionare, ma il diodo luminoso non si illuminerà.

Notare altresì che una corrente superiore alla massima specificata danneggerà il diodo luminoso e lo renderà inutilizzabile. Modelli applicabili:

D-A93, D-Z73

<Sensori stato solido>

- Se i collegamenti vengono invertiti su un sensore a 2 fili, il sensore non verrà danneggiato poiché è protetto da un circuito di protezione, ma rimarrà in una normale condizione ON. Sarà comunque necessario evitare collegamenti invertiti: in simili condizioni, un corto circuito del carico potrebbe danneggiare il sensore.
- 2) Se i collegamenti vengono invertiti (linea di alimentazione + con linea di alimentazione -) sui sensori a 3 fili, il sensore verrà protetto da un circuito di protezione. Se invece la linea di alimentazione (+) viene collegata al cavo blu e la linea di alimentazione (-) viene collegata al cavo nero, il sensore si danneggerà.

<D-M9□>

D-M91 non è dotato di circuiti integrati di protezione da corto circuiti. Se il collegamento dell'alimentazione è invertito (es. il cavo dell'alimentazione (+) e il cavo dell'alimentazione (-) sono invertiti), il sensore viene danneggiato.

5.Per rimuovere il rivestimento del cavo, fare attenzione alla direzione di spelatura. L'isolante potrebbe risultare danneggiato, se la direzione non è corretta (solo D-M9□).

Strumento raccomandato

Nome del modello	Codice
Wire stripper	D-M9N-SWY

^{*} Il pelatubi per cavo rotondo (ø 2.0) può essere usato con un cavo a 2 fili.

Ambiente di lavoro

∧ Attenzione

1. Non usare mai in presenza di gas esplosivi.

La struttura dei sensori non è antideflagrante. Non dovranno pertanto essere utilizzati in presenza di gas detonanti, poiché possono avvenire gravi esplosioni.

2. Non usare in presenza di campi magnetici.

I sensori potrebbero funzionare erroneamente o gli anelli all'interno dei cilindri smagnetizzarsi.

3. Non utilizzare in ambienti nei quali i sensori magnetici rimangano continuamente esposti all'acqua.

Benché i sensori soddisfino le norme IEC livello di protezione IP67 (JIS C 0920: struttura impermeabile), non usare sensori in applicazioni che li sottoporrebbero costantemente a spruzzi e getti d'acqua. Un isolamento scadente o il rigonfiamento della resina isolante presente all'interno dei sensori può condurre a malfunzionamento.

 Non usare in un ambiente saturo di olii o agenti chimici.

In caso di impiego in ambienti saturi di refrigeranti, solventi di pulizia, olii vari o agenti chimici, contattare SMC. Se i sensori vengono usati in tali condizioni anche per breve tempo, possono verificarsi eventi indesiderati come un deterioramento dell'isolamento, il rigonfiamento della resina isolante, o l'indurimento dei cavi.

5. Non usare in ambienti con temperatura variabile a cicli.

Consultare SMC nel caso di impiego di sensori in presenza di sbalzi di temperatura al di fuori nelle normali variazioni

In situazioni che presentano eccessivi urti non usare i sensori.

<Sensori reed>

Nel caso di impatto eccessivo (300 m/s² min.) sul sensore reed durante le operazioni, il punto di contatto può funzionare scorrettamente e generare o interrompere un segnale momentaneo (≤ 1 ms). Se fosse necessario l'uso di un sensore allo stato solido, consultare SMC.

7. Non usare in zone esposte a picchi di tensione.

<Sensori stato solido>

Quando esistono unità (come alzavalvole, fornaci a induzione di alta frequenza, motori, ecc.) che generano grandi quantità di picchi nell'area attorno ai cilindri, possono verificarsi danni nei circuiti interni dei sensori. Evitate la generazione di picchi di tensione e le linee incrociate.

Ambiente di lavoro

⚠ Precauzione

1. Evitare l'accumulazione di polvere di ferro o lo stretto contatto con sostanze magnetiche.

Se si accumulano grandi quantità di residui di ferro, come schegge di lavorazione, o se una sostanza magnetica (elementi attratti da un magnete) entra in contatto con l'attuatore sensore, quest'ultimo può funzionare in modo difettoso a causa della perdita di forza magnetica al suo interno.

- Per quanto riguarda la resistenza all'acqua, l'elasticità dei cavi e l'uso di in luoghi di saldatura, consultare SMC
- 3. Non utilizzare alla luce diretta del sole.
- 4. Non montare il prodotto in luoghi esposti a calore.

Manutenzione

∧ Attenzione

- Per evitare pericoli causati da malfunzionamenti inattesi dei sensori, realizzare periodicamente la seguente manutenzione.
 - 1) Stringere accuratamente le viti di montaggio dei sensori.
 - Se le viti si allentano o la posizione di montaggio ha subìto qualche variazione, serrare nuovamente le viti dopo aver reimpostato la posizione di montaggio.
 - 2) Verificare che i cavi non siano danneggiati.
 - Per evitare isolamenti erronei, sostituire i sensori o riparare i cavi in caso di danneggiamento.
 - 3) Verificare il funzionamento della luce verde sul sensore con indicatore ottico bicolore.
 - Verificare che il LED verde sia acceso quando viene fermato nella posizione stabilita. Se il LED rosso è illuminato, significa che la posizione di montaggio non è corretta. Regolare la posizione di montaggio fino a che il LED verde si accende.
- 2. Le operazioni di manutenzione sono indicate nel manuale operativo.

La mancata osservanza delle procedure può causare malfunzionamenti e può provocare danni all'impianto o alla macchina.

 Rimozione dell'impianto ed alimentazione/scarico dell'aria compressa.

Prima di spostare un macchinario o un impianto, prendere tutte le misure di sicurezza idonee per evitre cadute accidentali o movimenti imprevisti di oggetti e impianti, quindi togliere l'alimentazione elettrica e ridurre a zero la pressione del sistema. Solo dopo aver compiuti questi passi previ, si potrà procedere alla rimozione dell'impianto o macchinario in questione.

Al momento di riavviare il macchinario, verificare le condizioni di sicurezza per evitare oscillazioni degli attuatori.

Serie CY3B/CY3R Avvertenze specifiche del prodotto

Leggere attentamente prima dell'uso. Per le istruzioni di sicurezza e le precauzioni relative agli attuatori, vedere "Avvertenze per l'uso di impianti pneumatici" (M-03-E3A).

Montaggio

⚠ Precauzione

Evitare ammaccature o altri danni sulla superficie esterna del tubo.

Questo può dare luogo a danni al raschiastelo e all'anello di guida causando un funzionamento difettoso.

- 2. Prestare attenzione alla rotazione del cursore esterno.
 - La rotazione del cursore durante lo scorrimento può essere controllata collegandolo ad un altro asse (guida lineare, ecc.).
- 3. Non utilizzare in caso di accoppiamento magnetico fuori posizione.

Nel caso in cui l'accoppiamento magnetico sia collegato fuori dalla sua posizione, riportare il cursore esterno in posizione corretta mediante spinta manuale a fine corsa (o correggere il cursore pistone con aria compressa).

- Il cilindro è fissato mediante viti situate nei fori delle testate posteriori. Verificare che siano saldamente serrate. (CY3R)
- Se sulla superficie di montaggio e sulle testate sono riscontrabili interstizi, usare spessori di compensazione, per evitare eccessive tensioni. (CY3R)
- Assicurarsi prima di azionare il cilindro che entrambe le testate posteriori siano fissate a una superficie di montaggio.

Evitare di fissare il cursore esterno direttamente sulla superficie.

7. Non applicare carichi laterali al cursore esterno.

Quando un carico viene montato direttamente sul cilindro, non vengono assimilate le variazioni che avvengono al centro di ciascun asse, con conseguente carico laterale che causa malfunzionamenti. (Figura 1) Il cilindro deve operare utilizzando un metodo di connessione, che permette di assimilare le variazioni di allineamento dell'asse e deve inclinare il peso del cilindro. Si veda in Fig. 2 il montaggio consigliato.

Le variazioni del carico e l'allineamento asse cilindro non possono essere assimilati, ottenendo malfunzionamento. Le variazioni d'allineamento dell'asse sono assimilate da uno spazio previsto per i supporti di montaggio e il cilindro. Il supporto si estende oltre il centro dello stelo ed evita che il cilindro sia soggetto a momenti.

Figura 1. Montaggio scorretto Nota) L'immagine mostra la serie CY3B.

Figura 2. Montaggio consigliato

 Prestare attenzione al peso ammissibile in caso di funzionamento verticale.

Il peso carico ammissibile in direzione verticale (vedere pag. 5) è determinato dal metodo di selezione del modello. Tuttavia, se viene applicato un carico superiore ai valori ammissibili, l'accoppiamento magnetico può rompersi e il carico cadere. Quando utilizzate questo tipo di applicazione, contattate SMC (pressione, carico, velocità, corsa, frequenza, ecc.).

Montaggio

⚠ Precauzione

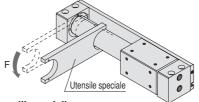
 Per collegare ad un carico con meccanismo di guida esterna, allineare meticolosamente.

A mano a mano che la corsa aumenta, aumentano anche le variazioni dell'asse centrale. Provvedere ad utilizzare un metodo di connessione (meccanismo flottante) per assorbire queste variazioni. Utilizzare gli speciali supporti snodati (XC57) forniti per le serie CY3B e CY3R (pagg. 28 ÷ 29).

Smontaggio/Manutenzione

Attenzione

 Prestare attenzione in quanto la forza d'attrazione del magnete è molto forte.


Nel rimuovere il cursore esterno e il cursore del pistone dal tubo del cilindro per la manutenzione o altro, maneggiare con cura, poiché i magneti presenti su ciascun cursore sono dotati di una forte capacità d'attrazione..

⚠ Precauzione

 Verificare il corretto fissaggio delle testate al momento del riassemblaggio. (CY3B)

Per procedere allo smontaggio, bloccare una delle testate con una morsa e svitare l'altra con una chiave o una chiave ad angolo regolabile. Stringendo nuovamente, rivestire prima con Locktight (n. 542 rosso), quindi stringere di nuovo da 3 a 5 oltre la posizione originale prima della rimozione.

2. Sono necessari utensili speciali per lo smontaggio. (CY3R)

Lista utensili speciali

Codici	Diametro applicabile (mm)
CYRZ-V	6, 10, 15, 20
CYRZ-W	25, 32, 40
CYRZ-X	50
CYRZ-Y	63

- 3. Prestare attenzione nel togliere il cursore esterno, in quanto il cursore del pistone verrà direttamente attratto da questo. Per rimuovere il cursore esterno o il cursore del pistone dal tubo del cilindro, innanzitutto procedere al distacco dei cursori dall'accoppiamento magnetico, quindi rimuoverli individualemente approfittando della'assenza di forza di presa. Se si tenta la rimozione ancora in fase di accoppiamento magnetico, essi verranno attratti reciprocamente e non si separeranno.
- Non smontare i componenti magnetici (cursore pistone, cursore esterno).
 - Ciò può comportare una perdita di forza di presa e malfunzionamenti.
- 5. Per la sostituzione delle guarnizioni e dell'anello di ritegno, consultare le istruzioni di smontaggio.

EUROPEAN SUBSIDIARIES:

SMC Pneumatik GmbH (Austria) Girakstrasse 8, A-2100 Korneuburg Phone: +43 2262-62280, Fax: +43 2262-62285 E-mail: office@smc.at http://www.smc.at

Belgium SMC Pneumatics N.V./S.A. Nijverheidsstraat 20, B-2160 Wommelgem Phone: +32 (0)3-355-1464, Fax: +32 (0)3-355-1466 E-mail: post@smcpneumatics.be http://www.smcpneumatics.be

Bulgaria
SMC Industrial Automation Bulgaria EOOD
16 kliment Ohridski Blvd., fl.13 BG-1756 Sofia
Phone:+359 2 9744492, Fax:+359 2 9744519
E-mail: office@smc.bg http://www.smc.bg

Croatia

SMC Industrijska automatika d.o.o. Crnomerec 12, 10000 ZAGREB Phone: +385 1 377 66 74, Fax: +385 1 377 66 74 F-mail: office@smc hr http://www.smceu.com

Czech Republic

SMC Industrial Automation CZ s.r.o. Hudcova 78a, CZ-61200 Brno Phone: +420 5 414 24611, Fax: +420 5 412 18034 E-mail: office@smc.cz http://www.smc.cz

Denmark

SMC Pneumatik A/S Knudsminde 4B, DK-8300 Odder Phone: +45 70252900, Fax: +45 70252901 E-mail: smc@smc-pneumatik.dk http://www.smc-pneumatik.com

Estonia

SMC Pneumatics Estonia OÜ Laki 12-101, 106 21 Tallinn Phone: +372 (0)6 593540, Fax: +372 (0)6 593541 E-mail: smc@smcpneumatics.ee http://www.smcpneumatics.ee

Finland

SMC Pneumatics Finland OY PL72, Tiistinniityntie 4, SF-02031 ESPOO Phone: +358 207 513513, Fax: +358 207 513595 E-mail: smcfi@smc.fi http://www.smc.fi

France

SMC Pneumatique, S.A.

1, Boulevard de Strasbourg, Parc Gustave Eiffel
Bussy Saint Georges F-77607 Mame La Vallee Cedex 3
Phone: +33 (0)1-6476 1000, Fax: +33 (0)1-6476 1010
E-mail: contact@smc-france.fr
http://www.smc-france.fr

Germany SMC Pneumatik GmbH Boschring 13-15, D-63329 Egelsbach Phone: +49 (0)6103-4020, Fax: +49 (0)6103-402139 E-mail: info@smc-pneumatik.de http://www.smc-pneumatik.de

Greece

Parianopoulus S.A. S. Parlaringoulus S.A. 7, Konstantinoupoleos Street, GR-11855 Athens Phone: +30 (0)1-3426076, Fax: +30 (0)1-3455578 E-mail: parlanos@hol.gr http://www.smceu.com

Hungary SMC Hungary Ipari Automatizálási Kft. Budafoki ut 107-113, H-1117 Budapest Phone: +36 1 371 1343, Fax: +36 1 371 1344 E-mail: office@smc-automation.hu http://www.smc-automation.hu

Ireland

SMC Pneumatics (Ireland) Ltd. 2002 Citywest Business Campus, Naas Road, Saggart, Co. Dublin Phone: -4353 (0)1-403 9000; Fax: +353 (0)1-464-0500 E-mail: sales@smcpneumatics.ie http://www.smcpneumatics.ie

Italy

MC Italia S.p.A Via Garibaldi 62, I-20061Carugate, (Milano) Phone: +39 (0)2-92711, Fax: +39 (0)2-9271365 E-mail: mailbox@smcitalia.it http://www.smcitalia.it

Latvia

SMC Pneumatics Latvia SIA Smerla 1-705, Riga LV-1006, Latvia Phone: +371 781-77-00, Fax: +371 781-77-01 E-mail: info@smclv.lv http://www.smclv.lv

Lithuania

SMC Pneumatics Lietuva, UAB Savanoriu pr. 180. LT-01354 Vilnius, Lithuania Phone: +370 5 264 81 26, Fax: +370 5 264 81 26

Netherlands

SMC Pneumatics BV De Ruyterkade 120, NL-1011 AB Amsterdam Phone: +31 (0)20-5318888, Fax: +31 (0)20-5318880 E-mail: info@emcpneumatics.nl http://www.smcpneumatics.nl

Spain SMC España, S.A. Zuazobidea 14, 01015 Vitoria Phone: +34 945-184 100, Fax: +34 945-184 124

E-mail: post@smc.smces.es http://www.smces.es

Sweden SMC Pneumatics Sweden AB Ekhagsvägen 29-31, S-141 71 Huddinge Phone: +46 (0)8-603 12 00, Fax: +46 (0)8-603 12 90

E-mail: post@smcpneumatics.se http://www.smc.nu

Turkey

http://www.entek.com.tr

// UK

http://www.smc.ch

Switzerland

SMC Pneumatik AG
Dorfstrasse 7, CH-8484 Weisslingen
Phone: +41 (0)52-396-3131, Fax: +41 (0)52-396-3191
E-mail: info@smc.ch

Entek Pnömatik San. ve Tic Ltd. Sti. Perpa Tic. Merkezi Kat. 11 No. 1625, TR-80270 Okmeydani Istanbul Phone: +90 (0)212-221-1512, Fax: +90 (0)212-221-1519 E-mail: smc-entek@entek.com.tr

SMC Pneumatics (UK) Ltd Vincent Avenue, Crownhill, Milton Keynes, MK8 0AN

Phone: +44 (0)800 1382930 Fax: +44 (0)1908-555064 E-mail: sales@smcpneumatics.co.uk

http://www.smcpneumatics.co.uk

Norway

SMC Pneumatics Norway A/S Vollsveien 13 C, Granfos Næringspark N-1366 Lysaker Tel: +47 67 12 90 20, Fax: +47 67 12 90 21 E-mail: post@smc-norge.no http://www.smc-norge.no

Poland

SMC Industrial Automation Polska Sp.z.o.o. ul. Konstruktorska 11A, PL-02-673 Warszawa, Phone: +48 22 548 5085, Fax: +48 22 548 5087 E-mail: office@smc.pl http://www.smc.pl

Portugal

Fortugal SMC Sucursal Portugal, S.A. Rua de Eng^o Ferreira Dias 452, 4100-246 Porto Phone: +351 22-610-89-22, Fax: +351 22-610-89-36 E-mail: postpt@smc.smces.es http://www.smces.es

Romania

SMC Romania srl Str Frunzei 29, Sector 2, Bucharest Phone: +40 213205111, Fax: +40 213261489 E-mail: smcromania@smcromania.ro http://www.smcromania.ro

Russia

SMC Pneumatik LLC. 4B Sverdlovskaja nab, St. Petersburg 195009 Phone::+812 718 5445, Fax:+812 718 5449 E-mail: info@smc-pneumatik.ru http://www.smc-pneumatik.ru

Slovakia SMC Priemyselná Automatizáciá, s.r.o. Námestie Martina Benku 10, SK-81107 Bratislava Phone: +421 2 444 56725, Fax: +421 2 444 56028 E-mail: office@smc.sk http://www.smc.sk

Slovenia

SMC industrijska Avtomatika d.o.o. Grajski trg 15, SLO-8360 Zuzemberk Phone: +386 738 85240 Fax: +386 738 85249 E-mail: office@smc-ind-avtom.si http://www.smc-ind-avtom.si

OTHER SUBSIDIARIES WORLDWIDE:

ARGENTINA, AUSTRALIA, BOLIVIA, BRASIL, CANADA, CHILE, CHINA, HONG KONG, INDIA, INDONESIA, MALAYSIA, MEXICO, NEW ZEALAND, PHILIPPINES, SINGAPORE, SOUTH KOREA, TAIWAN, THAILAND, USA, VENEZUELA

> http://www.smceu.com http://www.smcworld.com

